1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Salsk061 [2.6K]
3 years ago
10

How much heat is needed to vaporize 33.3 grams of ethyl alcohol at its boiling point of 78.0°C? The latent heat of vaporization

of ethyl alcohol is 857 J/g. Round your answer to three significant figures. joules
Physics
2 answers:
blsea [12.9K]3 years ago
6 0

Answer:

Q = 28538.1 J

Explanation:

As we know that heat require to vaporize the ethyl alcohol is given as

Q = mL

here we know that

m = mass = 33.3 gram

L = latent heat of fusion = 857 J/g

now from above formula

Q = (33.3 gram) \times (857 J/gram)

Q = 28538.1 J

so heat required in three significant figures is given as

Q = 2.85\times 10^4 J

so heat required to vaporize ethyl alcohol is 2.85\times 10^4 J

weeeeeb [17]3 years ago
4 0
The amount of heat needed to vaporize 33.3 grams of ethyl alcohol at its boiling point of 78.0°C is 28,500 joules.
You might be interested in
A 225-kg object and a 525-kg object are separated by 3.80 m. (a) Find the magnitude of the net gravitational force exerted by th
pav-90 [236]

Answer:F_{net}=3.383\times 10^{-7}\ N

Explanation:

Given

Mass of first object m_1=225\ kg

Mass of second object m_2=525\ kg

Distance between them d=3.8\ m

m_3=61\ kg object is placed between them

So force exerted by m_1 on m_3

F_{13}=\frac{Gm_1m_3}{1.9^2}

F_{13}=\frac{6.674\times 10^{-11}(225\times 61)}{1.9^2}

F_{13}=2.5374141274×10^{−7}\ N

Force exerted by m_2\ on\ m_3

F_{23}=\frac{Gm_2m_3}{1.9^2}

F_{23}=\frac{6.674\times 10^{-11}(525\times 61)}{1.9^2}

F_{23}=5.920632964\times 10^{-7}\ N

So net force on m_3 is

F_{net}=F_{23}-F_{13}

F_{net}=5.920632964\times 10^{-7}-2.5374141274\times 10^{-7}

F_{net}=3.383\times 10^{-7}\ N

i.e. net force is towards m_2

(b)For net force to be zero on m_3, suppose

So force exerted by m_1 and m_2 must be equal

F_{13}=F_{23}

\Rightarrow \frac{Gm_1m_3}{x^2}=\frac{Gm_2m_3}{(3.8-x)^2}

\Rightarrow \frac{m_1}{x^2}=\frac{m_2}{(3.8-x)^2}

\Rightarrow (\frac{3.8-x}{x})^2=\frac{m_2}{m_1}

\Rightarrow \frac{3.8-x}{x}=\sqrt{\frac{525}{225}}

\Rightarrow 3.8-x=1.52752x

\Rightarrow 3.8=2.52x

\Rightarrow x=1.507\ m

4 0
3 years ago
When does radioactivity decay occur?
Yuri [45]
In an unstable atomic nuclei 
6 0
3 years ago
Air enters the compressor of an ideal air-standard Braytoncycle at 100 kPa, 300 K, with a volumetric flow rate of 5 m3/s.The tur
Harrizon [31]

Answer:

Explanation:

Given that

Air Inlet Pressure, P1 = 100 KPa

Air Inlet temperature, T1 = 300 K  

Volume flow rate, Q = 5 m³/s

Turbine inlet temperature, T₃ = 1400 K

Compressor pressure ratio, r = 6, 8, 12

Heat capacity ratio or air = 1.4

γ= 1.4

Specific heat constant pressure of air, cp = 1.005 KJ/kg.k

At r = 6,

For Brayton cycle,

T2/T1 = r ^ (γ - 1)/γ

T3/T4 = r ^ (γ - 1)/γ

Now by putting the values

T2/300 = 6 ^ (1.4 - 1)/1.4

1400/T4 = 6 ^ (1.4 - 1)/1.4

T₂ = 1.67 × 300

= 500 K

T₄ = 1400/1.67

= 839.07 K

a)

Efficiency, η = 1 - ((T4 - T1)/(T3 - T2)

Inputting values,

= 1 - ((839.07 - 300)/(1400 - 500))

= 0.40

= 40%

B.

Bwr = Wcomp/Wturb

Where,

Wcomp = workdone by compressor

Wturb = workdone by turbine

= ((T2 - T1)/(T3 - T4))

= ((500 - 300)/(1400 - 839.07))

= 0.36

C.

Net work = Net heat

Net heat = Qa - Qr

Qr = Cp ( T₄-T₁)

Qa = Cp ( T₃-T₂)

Imputting values,

Net heat, Qnet = 1.005 (1400 - 500 - 839.07 + 300)

= 1.005 × 360.93

= 362.74 kJ/kg

Net heat, Qnet = 362.74 kJ/kg

Using the ideal gas equation,

P V = n R T

But n = mass/molar mass,

P  = ρ R T

By putting the values

P  = ρ R T

Inputting values,

100  = ρ x 0.287 x 300

ρ = 1.16  kg/m³

mass flow rate, m = ρ × Q

= 1.16 × 5

= 5.80 kg/s

Net power, Pnet = ms × Net heat, Qnet

= 5.8 × 362.74

= 2103.9 kW.

At r = 8,

For Brayton cycle,

T2/T1 = r ^ (γ - 1)/γ

T3/T4 = r ^ (γ - 1)/γ

Now by putting the values

T2/300 = 8 ^ (1.4 - 1)/1.4

1400/T4 = 8 ^ (1.4 - 1)/1.4

T₂ = 1.81 × 300

= 543.4 K

T₄ = 1400/1.81

= 772.9 K

a)

Efficiency, η = 1 - ((T4 - T1)/(T3 - T2)

Inputting values,

= 1 - ((772.9 - 300)/(1400 - 543.4))

= 0.448

= 45%

B.

Bwr = Wcomp/Wturb

Where,

Wcomp = workdone by compressor

Wturb = workdone by turbine

= ((T2 - T1)/(T3 - T4))

= ((543.4 - 300)/(1400 - 772.9))

= 0.39

C.

Net work = Net heat

Net heat = Qa - Qr

Qr = Cp ( T₄-T₁)

Qa = Cp ( T₃-T₂)

Imputting values,

Net heat, Qnet = 1.005 (1400 - 543.4 - 772.9 + 300)

= 1.005 × 383.7

= 385.62 kJ/kg

Net heat, Qnet = 385.62 kJ/kg

Using the ideal gas equation,

P V = n R T

But n = mass/molar mass,

P  = ρ R T

By putting the values

P  = ρ R T

Inputting values,

100  = ρ x 0.287 x 300

ρ = 1.16  kg/m³

mass flow rate, m = ρ × Q

= 1.16 × 5

= 5.80 kg/s

Net power, Pnet = ms × Net heat, Qnet

= 5.8 × 385.62

= 2236.59 kW.

At r = 12,

For Brayton cycle,

T2/T1 = r ^ (γ - 1)/γ

T3/T4 = r ^ (γ - 1)/γ

Now by putting the values

T2/300 = 12 ^ (1.4 - 1)/1.4

1400/T4 = 12 ^ (1.4 - 1)/1.4

T₂ = 2.03 × 300

= 610 K

T₄ = 1400/2.03

= 688.32 K

a)

Efficiency, η = 1 - ((T4 - T1)/(T3 - T2)

Inputting values,

= 1 - ((688.32 - 300)/(1400 - 610))

= 0.509

= 51%

B.

Bwr = Wcomp/Wturb

Where,

Wcomp = workdone by compressor

Wturb = workdone by turbine

= ((T2 - T1)/(T3 - T4))

= ((610 - 300)/(1400 - 688.32))

= 0.44

C.

Net work = Net heat

Net heat = Qa - Qr

Qr = Cp ( T₄-T₁)

Qa = Cp ( T₃-T₂)

Imputting values,

Net heat, Qnet = 1.005 (1400 - 610 - 688.32 + 300)

= 1.005 × 401.68

= 403.7 kJ/kg

Net heat, Qnet = 403.7 kJ/kg

Using the ideal gas equation,

P V = n R T

But n = mass/molar mass,

P  = ρ R T

By putting the values

P  = ρ R T

Inputting values,

100  = ρ x 0.287 x 300

ρ = 1.16  kg/m³

mass flow rate, m = ρ × Q

= 1.16 × 5

= 5.80 kg/s

Net power, Pnet = ms × Net heat, Qnet

= 5.8 × 403.7

= 2341.39 kW.

3 0
3 years ago
Read 2 more answers
A cube of mass m1=9.6 kgm1=9.6 kg is sitting on top of a second cube of the same size and mass m2=0.8 kgm2=0.8 kg while both are
GalinKa [24]

Answer:N=0

Explanation:

Given

m_1=9.6 kg

m_2=0.8 kg

both blocks experiencing free fall so net weight of block during free fall is zero thus there is no normal reaction between them.

N=0

8 0
3 years ago
The distance from Earth to the star Epsilon Eridani is about 10.5 light years. Which of the following statements is true?
Simora [160]
<span>The correct answer is B. - It would take a ray of light 10.5 light years to travel from Earth to Epsilon Eridani, or vice-versa. Using our current technology it would take far longer than 21.0 years for a space ship from Earth to travel that far - I would have to guess many hundreds of years.</span>
4 0
3 years ago
Read 2 more answers
Other questions:
  • 2 particles having charges q1=0.500 nC and q2=8.00 nC are separated by a distance of 1.20m. at what point along the line connect
    10·2 answers
  • An observer measures the length (L), width (w), and height (h) of a box while stationary relative to the box. The observer then
    5·1 answer
  • If the distance between the bounces were 1.95 m instead of 1.30 m, but the height remained at 1.30 m, which of your answers to P
    5·1 answer
  • What is the mechanical advantage of a machine that applies a force of 1000 N to an object when a force of 500 N is applied to th
    9·2 answers
  • Jay rides his 2.0-kgkg skateboard. He is moving at speed 5.8 m/sm/s when he pushes off the board and continues to move forward i
    14·1 answer
  • A student who has trouble hearing and must have a written copy of class lectures in order to participate in class is considered
    13·1 answer
  • What are the components of a vector with a magnitude of 4.00 and a direction of -112 degrees
    9·1 answer
  • What is the best explanation for seasons?
    7·2 answers
  • I really need the answer to this question please
    14·1 answer
  • Some sports or activities you can do to improve your overall health and how physical activity can improve your
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!