Answer:
k = 9.6 x 10^5 N/m or 9.6 kN/m
Explanation:
First, we need to use the expression to calculate the spring constant which is:
w² = k/m
Solving for k:
k = w²*m
To get the angular velocity:
w = 2πf
The problem is giving the linear velocity of the car which is 5.7 m/s. With this we can calculate the frequency of the car:
f = V/x
f = 5.7 / 4.9 = 1.16 Hz
Now the angular velocity:
w = 2π*1.16
w = 7.29 rad/s
Finally, solving for k:
k = (7.29)² * 1800
k = 95,659.38 N/m
In two significant figures it'll ve 9.6 kN/m
Answer:
20 ms¯¹
Explanation:
3. Determination of the final velocity
From the question given above, the following data were obtained:
Time (t) = 4 s
Acceleration (a) = 5 ms¯²
Initial velocity (u) = 0 ms¯¹
Final velocity (v) =?
Acceleration is simply defined as the change in velocity per unit time.
Mathematically, it can be expressed as:
Acceleration (a) = final velocity – Initial velocity / time
a = v – u / t
With the above formula, we can obtain the final velocity of the car as follow:
Time (t) = 4 s
Acceleration (a) = 5 ms¯²
Initial velocity (u) = 0 ms¯¹
Final velocity (v) =?
a = v – u / t
5 = v – 0 / 4
5 = v / 4
Cross multiply
v = 5 × 4
v = 20 ms¯¹
Thus, the final velocity of the car is 20 ms¯¹
Is a circuit with both a resistor (R) and a capacitor (C). RC circuits are frequent element in electronic devices. They also play an important role in the transmission of electrical signals in nerve cells.
Hope this helps!
Answer:
Time - taken = 2.5 s
deceleration= -8 m/s²
Solution:
Given:
speed, v = 8 m/s
distance, d = 20m
To Find:
deacceleration = ?
As we know speed is defined as
v = d/t
plugging in the values
t = 20/ 8
t = 2.5s
Now from deceleration formula
a = - v/ t
a = - 20/ 2.5
a = - 8 m/s²
Thus, the time taken and acceleration is 2.5 s and -8 m/s²
respectively.
Learn more about deceleration here:
brainly.com/question/13354629
#SPJ4