The answer to your question is: Chemical Reaction.
We can use the combined gas law equation to find the new pressure of the gas.

where P - pressure
V - volume
T - temperature
parameters for the first instance are on the left side and parameters for the second instance are on the right side of the equation
P1 - 795 mm Hg x 0.0013 atm/ mm Hg = 1.033 atm
T1 - 23.5 °C + 273 = 296.5 K
T2 - 31.7 °C + 273 = 304.7 K
substituting the values in the equation

P = 0.712 atm
the answer closest to this value is A) 0.723 atm
therefore answer is
<span>A) 0.723 atm</span>
Answer:
newtons 3rd law
Explanation:
if the engine is supplying propulsion, then the mass will be pushed by it.
Answer:
there are 13 moles in the compound
Answer:
2KClO3 -------> 2KCl + 3O2
Explanation:
First, in balancing a chemical reaction such as the one given in the question, you should understand that for an equation to be balanced, the number of atoms and ions on both sides of the equation that is the right and left side must be equal. This follows the law of conservation of mass which tells us that matter can neither be created nor destroyed but can be changed into another form.
Next is to begin balancing the equation by identifying and writing down the substances given:
KCl03 ---------> KCl + O2
Next is to count he number of the individual atoms on each side and find out if they are the same on both sides and if not you must follow the next step.
Add a corresponding number and use it to multiply the atoms involved
KClO3 ---------> KCl + O2
Oxygen is 3 on the left side and two on the other side, so we multiply the left hand side by 2 and the right hand side by 3
2KClO3 -----> KCl + 3O2
The potassium and Chlorine are no longer balanced, so you multiply the right had=nd side of KCl by 2.
2KClO3 -----> 2KCl + 3O2
The reactionis herefore balanced as both sides have equal number of atoms and ions.