Hi there! :)
Reference the diagram below for clarification.
1.
We must begin by knowing the following rules for resistors in series and parallel.
In series:

In parallel:

We can begin solving for the equivalent resistance of the two resistors in parallel using the parallel rules.

Now that we have reduced the parallel resistors to a 'single' resistor, we can add their equivalent resistance with the other resistor in parallel (15 Ohm) using series rules:

2.
We can use Ohm's law to solve for the current in the circuit.

3.
For resistors in series, both resistors receive the SAME current.
Therefore, the 15Ω resistor receives 6A, and the parallel COMBO (not each individual resistor, but the 5Ω equivalent when combined) receives 6A.
In this instance, since both of the resistors in parallel are equal, the current is SPLIT EQUALLY between the two. (Current in parallel ADDS UP). Therefore, an even split between 2 resistors of 6 A is <u>3A for each 10Ω resistor</u>.
4.
Since the 15.0 Ω resistor receives 6A, we can use Ohm's Law to solve for voltage.

Answer:
v = 7.4 m/s
Explanation:
Given that,
Mass if a volleyball, m = 5 kg
The ball reaches a height of 2.8 m
We need to find how fast the ball is going as it bumped into the air. Ket the velocity is v. Using the conservation of energy to find it as follows :

So, the required speed is 7.4 m/s. Hence, the correct option is (b).
Frost will disturb the smooth flow of air over the wing, unpleasantly
distressing its lifting competence. In other words, this spoils the even flow
of air over the wings, by this means decreasing lifting capability. Also, frost
may avoid the airplane from becoming flying at normal departure speed.