To find the time it takes for the ball to reach the given height, we need an equation that relates the height and time it travel which is given to be <span>h=-16t^{2}+56t. We just substitute the height of 49 feet then solve for t. We do as follows:
</span><span>h=-16t^{2}+56t
49 = </span>-16t^{2}+56t
t = 1.75 seconds
Hope this answers the question. Have a nice day.
Answer:
11.962337 × 10^-4 N
Explanation:
Given the following :
Length L = 11.8
Charge = 29nC = 29 × 10^-9 C
Linear charge density λ = 1.4 × 10^-7 C/m
Radius (r) = 2cm = 2/100 = 0.02 m
Using the relation:
E = 2kλ/r ; F =qE
F = 2kλq/L × ∫dr/r
F = 2*k*q*λ/L × (In(0.02 + L) - In(0.02))
2*k*q*λ/L = [2 × (9 * 10^9) * (29 * 10^9) * (1.4 * 10^-7)]/ 0.118] = 6193.2203 × 10^(9 - 9 - 7) = 6193.2203 × 10^-7 = 6.1932203 × 10^-4
In(0.02 + 0.118) - In(0.02) = In(0.138) - In(0.02) = 1.9315214
Hence,
(6.1932203 × 10^-4) × 1.9315214 = 11.962337 × 10^-4 N
The correct answer is - It is the part of the ocean where new crusts are formed.
The place marked with A on the map is the place in the ocean where the new crust is formed. That is a place where there's a divergent plate boundary, or rather a place where the tectonic plates are moving away from one another. The gap and cracks left between them are easy target for the magma from the mantle to penetrate towards the surface. As the magma reaches the ocean floor it starts to cool off very quickly, creating new crust, and slowly making a very large underwater mountain range known as mid-ocean ridge.
I would say that it is Meteors, Meteorites, and comets. (METEORS may be wrong)