Answer:
His gravitational potential energy will increase as well.
Explanation:
Let gpe represent gravitational potential energy.
gpe = mass × gravitational field strength × height
From the formula above, we can conclude that as the mass of a body increases, it's gpe increases too.
Answer: 0.5N
Explanation: if the system is at equilibrium, sum of the torque will be equal to zero.
But if they are not in equilibrium.
U will find the difference in the two torque
find the attached file for solution
Answer:
time required after impact for a puck is 2.18 seconds
Explanation:
given data
mass = 30 g = 0.03 kg
diameter = 100 mm = 0.1 m
thick = 0.1 mm = 1 ×
m
dynamic viscosity = 1.75 ×
Ns/m²
air temperature = 15°C
to find out
time required after impact for a puck to lose 10%
solution
we know velocity varies here 0 to v
we consider here initial velocity = v
so final velocity = 0.9v
so change in velocity is du = v
and clearance dy = h
and shear stress acting on surface is here express as
= µ 
so
= µ
............1
put here value
= 1.75×
× 
= 0.175 v
and
area between air and puck is given by
Area =
area =
area = 7.85 ×
m²
so
force on puck is express as
Force = × area
force = 0.175 v × 7.85 × 
force = 1.374 ×
v
and now apply newton second law
force = mass × acceleration
- force = 
- 1.374 ×
v = 
t = 
time = 2.18
so time required after impact for a puck is 2.18 seconds
Answer: C
Explanation: weak nuclear
Answer:
In marine ecosystems, climate change is associated with concurrent shifts in temperature, circulation, stratification, nutrient input, oxygen content, and ocean acidification. There are also strong linkages between climate and species distributions, phenology, and demography.
Explanation:
Mark her brainliest