I’m sorry if i took up a lot of space, hope this is a valid approximate answer
Answer:
vi) Double the current in the wire, and double the number of turns in the 20-cm long solenoid
Explanation:
The magnetic field inside the solenoid and the current flowing in the coil of solenoid are related to each other by the following equation
B₀=μ₀nI₀
Where,
B₀ is the magnetic field in the middle of solenoid
n is the number of turns in the coil of solenoid
I₀ is the current flowing in the coil of solenoid
In the above equation, as μ₀ is a constant so the magnetic field will be directly proportional to the number of turns multiplied by the current. So, changing the radius of the coil or length of the coil will have no effect on the magnetic field.
As we have to increase the magnetic field by 4 times, we need to double the current as well as the number of turns as mentioned in the option vi.
Answer:
Q = 5267J
Explanation:
Specific heat capacity of copper (S) = 0.377 J/g·°C.
Q = MSΔT
ΔT = T2 - T1
ΔT=49.8 - 22.3 = 27.5C
Q = change in energy = ?
M = mass of substance =508g
Q = (508g) * (0.377 J/g·°C) * (27.5C)
Q= 5266.69J
Approximately, Q = 5267J
The velocity of the ball when it was caught is 12.52 m/s.
<em>"Your question is not complete it seems to be missing the following, information"</em>,
find the velocity of the ball when it was caught.
The given parameters;
maximum height above the ground reached by the ball, H = 38 m
height above the ground where the ball was caught, h = 30 m
The height traveled by the ball when it was caught is calculated as follows;
y = H - h
y = 38 - 30 = 8 m
The velocity of the ball when it was caught is calculated as;

Thus, the velocity of the ball when it was caught is 12.52 m/s.
Learn more here: brainly.com/question/14582703
Answer:
a) α = 1.875 
b) t = 8 s
Explanation:
Given:
ω1 = 0 
ω2 = 15 
theta (angular displacement) = 60 rad
*side note: you can replace regular, linear variables in kinematic equations with angular variables (must entirely replace equations with angular variables)*
a) α = ?
(ω2)^2 = (ω1)^2 + 2α(theta)
=
+ 2(α)(60)
225 = 120α
α = 1.875 
b)
α = (ω2-ω1)/t
t = (ω2-ω1)/α = (15-0)/1.875 = 8
t = 8 s