Answer:
Explanation:
The trick is in finding the volume.
Final Volume = 26.64
Initial Volume=<u>20.92</u> Subtract
Metal Volume 5.72 cm^3
Density = mass / volume
Density = 72.17 / 5.72
Density = 12.617
A steel piano wire, of length 1.150 m and mass of 4.80 g is stretched under a tension of 580.0 N.the speed of transverse waves on the wire would be 372.77 m/s
<h3>What is a sound wave?</h3>
It is a particular variety of mechanical waves made up of the disruption brought on by the movements of the energy. In an elastic medium like the air, a sound wave travels through compression and rarefaction.
For calculating the wave velocity of the sound waves generated from the piano can be calculated by the formula
V= √F/μ
where v is the wave velocity of the wave travel on the string
F is the tension in the string of piano
μ is the mass per unit length of the string
As given in question a steel piano wire, of length 1.150 m and mass of 4.80 g is stretched under a tension of 580.0 N.
The μ is the mass per unit length of the string would be
μ = 4.80/(1.150×1000)
μ = 0.0041739 kg/m
By substituting the respective values of the tension on the string and the density(mass per unit length) in the above formula of the wave velocity
V= √F/μ
V=√(580/0.0041739)
V = 372.77 m/s
Thus, the speed of transverse waves on the wire comes out to be 372.77 m/s
Learn more about sound waves from here
brainly.com/question/11797560
#SPJ1
Answer:
The velocity of the freight car decreases.
Explanation:
This question is answered by the conservation of momentum principle.
When the freight car is moving at a certain speed, it has a constant momentum.
We will call this M1.
The equation for M1 will be:
M1 = Mass * Speed
Now when the coal is dumped into the freight car, the Mass increases.
Since conservation of momentum states that the momentum will remain the same. We have:
M1 = (Mass of freight + Mass of coal) * Speed
Since M1 is constant, if the mass increases, the speed had to decrease to keep the equation true.
<em>1</em><em>.</em><em>259ms^2</em>
Explanation:
since, WORK DONE = FORCE*DISTANCE
AND, FORCE=MASS*ACCELERATION
SO, THE WORK DONE BECOMES=MASS*ACCELERATION*DISTANCE
ACCELERATION=WORK/(MASS*DISTANCE)
AND, WORK=686J
MASS=227kg
DISTANCE=2.4m
THEREFORE, ACCELERATION=686/(227*2.4)
=686/544.8
=1.259ms^2
Answer:
0.2 m
Explanation:
PHASE 1
First, we calculate the distance the tongue moved in the first 20 ms (0.02 secs). We use one of Newton's equations of linear motion:

where u = initial velocity = 0 m/s
a = acceleration = 
t = time = 0.02 s
Therefore:

PHASE 2
Then, for the next 30 ms (0.03 secs), we use the formula:

This speed is the same as the final velocity of the tongue after the first 20 ms.
This can be obtained by using the formula:

Therefore:
distance = 5 * 0.03 = 0.15 m
Therefore, the total distance moved by the tongue in the 50 ms interval is:
0.05 + 0.15 = 0.2 m