I believe the answer is potential difference
Answer:
The speed it reaches the bottom is

Explanation:
Given:
, 
Using the conservation of energy theorem


, 
![m*g*h=\frac{1}{2}*m*(r*w)^2 +\frac{1}{2}*[\frac{1}{2} *m*r^2]*w^2](https://tex.z-dn.net/?f=m%2Ag%2Ah%3D%5Cfrac%7B1%7D%7B2%7D%2Am%2A%28r%2Aw%29%5E2%20%2B%5Cfrac%7B1%7D%7B2%7D%2A%5B%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Ar%5E2%5D%2Aw%5E2)


Solve to w'





That would be true because a solid object can cast a shadow
Answer:
40 N
Explanation:
F=ma where F is the applied force, m is the mass of object and a is the acceleration.
Since there is no friction, substituting 20 Kg for m and 2 m/s squared for a then we obtain
F=20*2=40 N