Answer:
Ammeter
Explanation:
Instrument for measuring either direct or alternating electric current, in amperes. Ammeters vary in their operating principles and accuracies
Answer:
Planned maintenance refers to any scheduled activity carried out to check a machine is working ok and diagnose procedures to fix it if need it. On the other hand, predictive mainteance is all the techniques which help to define if a machine requires or not maintenance activities so far.
Explanation:
Planned maintenance is based on preventive routines to ensure a machine is working in acceptable conditions and at the same time prevent them to change to risky values performing acticities like parts replacement, cleaning, etc. The key of this maintenance is schedule, that is to say, is a maintenance that has to be carried out constantly each certain time. Predictive maintenance is different because it is used to define if a machie needs any kind of inspection or if, on the contrary, the machine can continue operating without any intervention. The good point about predictive maintenance is the capability of telling when a maintenance is required and when is no necessarily required which is ideal to save costs.
Answer:
Phase diagrams represent the relationship between temperature and the composition of phases present at equilibrium. An isomorphous system is one in which the solid has the same structure for all compositions. The phase diagram shown is the diagram for Cu-Ni, which is an isomorphous alloy system.
Hope it help you friend
Answer:
a) 1253 kJ
b) 714 kJ
c) 946 C
Explanation:
The thermal efficiency is given by this equation
η = L/Q1
Where
η: thermal efficiency
L: useful work
Q1: heat taken from the heat source
Rearranging:
Q1 = L/η
Replacing
Q1 = 539 / 0.43 = 1253 kJ
The first law of thermodynamics states that:
Q = L + ΔU
For a machine working in cycles ΔU is zero between homologous parts of the cycle.
Also we must remember that we count heat entering the system as positiv and heat leaving as negative.
We split the heat on the part that enters and the part that leaves.
Q1 + Q2 = L + 0
Q2 = L - Q1
Q2 = 539 - 1253 = -714 kJ
TO calculate a temperature for the heat sink we must consider this cycle as a Carnot cycle. Then we can use the thermal efficiency equation for the Carnot cycle, this one uses temperatures:
η = 1 - T2/T1
T2/T1 = 1 - η
T2 = (1 - η) * T1
The temperatures must be given in absolute scale (1453 C = 1180 K)
T2 = (1 - 0.43) * 1180 = 673 K
673 K = 946 C