Light that enters the new medium <em>perpendicular to the surface</em> keeps sailing straight through the new medium unrefracted (in the same direction).
Perpendicular to the surface is the "normal" to the surface. So the angle of incidence (angle between the laser and the normal) is zero, and the law of refraction (just like the law of reflection) predicts an angle of zero between the normal and the refracted (or the reflected) beam.
Moral of the story: If you want your laser to keep going in the same direction after it enters the water, or to bounce back in the same direction it came from when it hits the mirror, then shoot it <em>straight on</em> to the surface, perpendicular to it.
The MA is 6! Hope This Helps!
The speed of the wave is mathematically given as
v=2266.66m/s
A long wave with a period of about 15 minutes will travel across the oceans at a speed of approximately v=2266.66m/s
<h3>
Speed of the wave</h3>
Question Parameters:
A long wave with a period of about 15 minutes
Generally the equation for the Wave velocity is mathematically given as
v=\lambda * frequency
Where
f=1/t
Therefore
v=\lambda * frequency
v=\lambda * 1/t
Therefore, with wavelenght of the ocean as 34km
v=34*1000*1/15
v=2266.66m/s
For more information on Speed
brainly.com/question/4931057
Answer:
51793 bright-dark-bright fringe shifts are observed when the mirror M2 moves through 1.7cm
Explanation:
The number of maxima appearing when the mirror M moves through distance \Delta L is given as follows,

Here,
= is the distance moved by the mirror M
is the wavelenght of the light used.
= 0.017m



Therefore, 51793 bright-dark-bright fringe shifts are observed when the mirror M2 moves through 1.7
The bag moves to the left.
This is because of Newton's third law of motion that states:
For every action force on a body, there is an opposite and equal reaction force.
Thus pushing the bag from the right makes it move to the left.