Normal force is mass x gravity, so mass x 9.81
Explanation :
Distance is total path travelled by an object during its entire journey. It is a scalar quantity i.e only magnitude.
Displacement is the shortest distance covered by an object. It is basically the change in position of object. It is a vector quantity i.e direction as well as magnitude.
When an object is travelling in a straight line and stops at the end point, then both distance and displacement are same.
When an object is travelling in a straight line and then changes its direction or we can say come backwards then the magnitude of distance and displacement are different.
The concept needed to solve this problem is average power dissipated by a wave on a string. This expression ca be defined as

Here,
= Linear mass density of the string
Angular frequency of the wave on the string
A = Amplitude of the wave
v = Speed of the wave
At the same time each of this terms have its own definition, i.e,
Here T is the Period
For the linear mass density we have that

And the angular frequency can be written as

Replacing this terms and the first equation we have that



PART A ) Replacing our values here we have that


PART B) The new amplitude A' that is half ot the wavelength of the wave is


Replacing at the equation of power we have that


To develop the problem we will start by finding the energy taken by each cycle through the efficiency of the motor and the exhausted energy. Later the work will be found for the conservation of energy in which this is equivalent to the difference between the two calculated energy values. Finally the estimated time will be calculated with the work and the power given,








PART A)
Work done by the heat engine in each cycle = W



According to the value given we have that,


Power is defined as the variation of energy as a function of time therefore,




Therefore the interval for each cycle is 0.75s
Answer:
Sorry for waisting ur time just tryna get points :)
Explanation: