Answer:
a) Watch the attaccment
b) Ethyl bromide is more reactive than n-propyl bromid, and this more than neopentyl bromide. Ethyl bromide has less steric hindrance than the others, to SN2 reactions.
c) t-butyl bromide is more reactive than isopropyl bromide, and this more than ethyl bromide. t-butyl bromide structure stabilize the carbocation, better than the others.
Explanation:
Speed of SN2 reactions depends on steric hindrance, the less hindrance, the most reaction speed, meaning more reactivity. Then, those linear structures are more reactive to SN2 reactions.
In the other hand, speed of SN1 reactions depends on the stability of the carbocation formed. Structure with ramifications can stabilize better the carbocation, these structures are more reactive to SN1 reactions.
The answer should be D. A rate law needs to be rate equaling the rate constant which is represented as k (make sure you use a lower case k since an upper case K is for equilibrium) times the concentrations of each reactant raised to the power of what ever order it has. (if A was a zero order it would be [A]⁰ and if A was third order it would be [A]³).
Do not get the order the reactants are confused with the coefficients in the chemical equation. (just because the reaction has 2B does not mean the rate law will have [B]². As shown in this example since it is first order therefore being [B] in the rate law)
I hope this helps. Let me know if anything is unclear in the comments.
Element at Extreme Left In Periodic Table:
The elements of Group I-A (1) are present at extreme left of the periodic table. They are called as Alkali Metals. Alkali Metals are strong metals. These elements can easily loose their valence electron. The valence shell electronic configuration of these elements is,
ns¹
where n is principle quantum number, which shows main energy level or shell. These metals can gain Noble gas configuration (stable configuration) either by loosing one electron or by gaining seven or more electrons. As it is quite reasonable to loose one electron instead of gaining seven or more electrons so these element easily loose one electron to gain noble as configuration. The Metallic character decreases along the period from left to right. So Group II-A (2) are second most metallic elements and so on. These metals at extreme left mainly exist in solid form.
Element at Extreme Right In Periodic Table:
Elements present at extreme right of the periodic table lacks the properties of metallic character and act as non-Metals. They have almost complete outermost shell or have the deficiency of one or two electrons. They are not as hard as metallic elements and they exist with complete octet like in Noble gases, or deficient with one electron (Halogens) or two electrons (oxygen group). These elements tend to gain or accept electron if their valence shell is deficient with required number of elements. Like the valence electronic configuration of Halogens is,
ns², np⁵
So, Halogens readily accept one electron and attain noble gas configuration. Elements at extreme left exist mainly in gas phase.
Answer:
O a polymer
Explanation:
When many repeating simple subunits are joined together, this results into a polymer.
The simplest unit or smallest unit of any substance is called a monomer. When many units of a monomer joins together, a polymer results.
- For proteins, the monomeric unit is amino-acid.
- When they combine they form longer chain molecules called proteins.
- For carbohydrates, the monomeric unit is called glucose.
- When they are combined they give us a wide range of carbohydrate molecules.