Answer:
92.72 kJ
Explanation:
2 N₂ (g) + O₂ (g) —-> 2 N₂O
According to question , one mole of N₂O requires 163.2 kJ of heat
Molecular weight of N₂O = 44 gm
25 g N₂O = 25 / 44 mole
25 / 44 mole will require 163.2 x 25 / 44 kJ
= 92.72 kJ
C most likely sorry if I’m wrong
Answer:
B. temperature decreases as altitude increases.
Explanation:
Just like in the lower reaches of the atmosphere, the troposphere, in the mesosphere, temperature decreases as altitude increases.
The mesosphere is the third layer of the atmosphere just above the stratosphere.
- It begins at the top of the stratosphere and ends at the mesopause where the thermosphere begins.
- The mesosphere is often referred to as the middle layer.
With increasing height, the temperature of the mesosphere decreases significantly. The top of the mesosphere is one of the coldest part of the earth atmosphere. This is as a result of increasing atmospheric cooling by carbon dioxide in this region of the atmosphere.
Answer:
Mg(NO4)2 is 180.3 g/mol
Explanation:
First find the substance formula.
Magnesium Nitrate.
Magnesium is a +2 charge.
Nitrate is a -1 charge.
So to balance the chemical formula,
We need 1 magnesium atom for every nitrate atom.
2(1) + 1(-2) = 0
So the substance formula is Mg(NO4)2.
Now find the molar mass of Mg(NO4)2.
Mg = 24.3 amu
N = 14.0 amu
O = 16.0 amu
They are three nitrogen and twelve oxygen atoms.
So you do this: 24.3 + 14.0(2) + 16.0(8) = 180.3 g/mol
So the molar is mass is 180.3 g/mol.
The final answer is Mg(NO4)2 is 180.3 g/mol
Hope it helped!
Answer:
Of lower concentration or less concentrated
Explanation:
Osmosis is the movement of solvent from a region of lower concentration of solute to a region of higher concentration of solute through a semipermeable membrane in order to equalize the concentration of the solutions on both sides.
Since the membrane of the bag is semipermeable, then the fact that the bag in the beaker decreased in size, lost volume, and became flaccid indicates that the solution in the bag is of lower solute concentration than the solution in the beaker hence the movement of water molecules into the beaker by osmosis.