Answer:
Required energy = 4758 J
Explanation:
Specific heat capacity of a material is the amount of energy required to raise the temperature of one kilogram (kg) of that material through one degree Celsius (°C).
Given data :
Specific heat capacity = c = 2440 J/kg.°C
Mass = m = 150 g = 0.15 kg
Initial temperature = 22°C
Final temperature = 35°C
Change in Temperature = ΔT = 13°C
Energy = E = ?
Using the following formula and substituting the values, we get:
E = m × c × ΔT
E = 0.15 × 2440 × 13
E = 4758 J
Answer:
Their measured results are closer to the exact or true value. Hence, their measured value is considered to be more accurate.
Explanation:
Considering the situation described above, the accuracy of a measured value depicts how closely a measured value is to the accurate value.
Hence, since the students' measured values have very low percent differences, it shows the similarity of computations or estimates to the actual values, which in turn offers a smaller measurement error.
Therefore, their measured results are closer to the exact or true value, which implies that their measured value is considered to be more accurate.
Answer:
Initial position of a body is the position of the body before accelerating or increasing its velocity the position changes and then that position is the final position.
hope it is helpful...
Answer:
magnification is - 159
objective distance is 3.85 cm
Explanation:
Given data
focal length f1 = 1.40 cm
focal length f2 = 2.20 cm
separated d = 19.6 cm
to find out
angular magnification and How far from the objective
solution
we know magnification formula that is
magnification = ( - L / f1 ) (D/f2)
here D = 25 cm put all value
magnification = ( - 19.6 / 1.40 ) (25/2.20)
magnification = - 159
and
now we apply lens formula
i/f = 1/q + 1/p
p = f2 = 2.20
so
q = f2 p / p -f2
q = 1.4(2.20) / ( 2.2 - 1.4 )
q = 3.85 cm
so objective distance is 3.85 cm