Answer:
(a) 7 m/s
(b) 931 rad/s
(c) 0.716 s
Explanation:
Gravity would be exerting on the 2 masses


Since heavier, mass 1 (M) would be the one pulling down, while mass 2 is being pulled up.
So the net force on mass 1 is

This force would generate torque on the solid pulley

We can also calculate the pulley moments of inertia, with it being solid

From there we can calculate the angular acceleration of the pulley, which generates the entire system motion

Since the system is moved by a distance of d = 2.5m, the pulley would have turn an angle of

(c)The time it takes to get to this distance is



(b)The final angular speed of the disk is

(a) And so the perimeter speed of the pulley, which is also speed of mass 1 when it comes to d = 2.5 m is

Electromagnetic waves are waves characterized by oscillating coupled electric and magnetic fields (electromagnetic fields). Because these are waves, they are shown to exhibit wave phenomena such as diffraction, reflection, and transmission, much like other types of waves.
The best description looks like option D
Answer:
![[F]=[MLT^{-2}]](https://tex.z-dn.net/?f=%5BF%5D%3D%5BMLT%5E%7B-2%7D%5D)
Explanation:
Newton’s second law states that the acceleration a of an object is proportional to the force F acting on it is inversely proportional to its mass m. The mathematical expression for the second law of motion is given by :
F = m × a
F is the applied force
m is the mass of the object
a is the acceleration due to gravity
We need to find the dimensions of force. The dimension of force m and a are as follows :
![[m]=[M]](https://tex.z-dn.net/?f=%5Bm%5D%3D%5BM%5D)
![[a]=[LT^{-2}]](https://tex.z-dn.net/?f=%5Ba%5D%3D%5BLT%5E%7B-2%7D%5D)
So, the dimension of force F is,
. Hence, this is the required solution.
W=mgh
W=(6)(9.8)(4)
W= 235.2J
Answer is (c), the latent heat of fusion. That is by definition the heat that 1 kg of a substance must absorb to melt in the vicinity of its melting point.