To calculate the mass of the fuel, we use the formula

Here, m is the mass of fuel, V is the volume of the fuel and its value is
and
is the density and its value of 0.821 g/mL.
Substituting these values in above relation, we get
Thus, the mass of the fuel 247 .94 kg.
Answer:
5.62 m/s
Explanation:
Newton's law of motion can be used to determine the maximum speed of the elevator. In the question, we are given:
Force exerted by the elevator (R) = 1.7 times the weight of the passenger (m*g)
Thus: R = 1.7*m*g
Distance (s) = 2.3 m
Newton's second law of motion: R - m*g = m*a
1.7*m*g - m*g = m*a
a = 0.7*m*g/m = 0.7*g = 0.7*9.8 = 6.86 m/s²
To determine the maximum speed:



Therefore, the elevator maximum speed is equivalent to 5.62 m/s.
There are many types of machine what type well for every day machines like treadmills is sweating, dehydration, loss of calories or fat.
Answer:
The speed of the electron is 1.371 x 10⁶ m/s.
Explanation:
Given;
wavelength of the ultraviolet light beam, λ = 130 nm = 130 x 10⁻⁹ m
the work function of the molybdenum surface, W₀ = 4.2 eV = 6.728 x 10⁻¹⁹ J
The energy of the incident light is given by;
E = hf
where;
h is Planck's constant = 6.626 x 10⁻³⁴ J/s
f = c / λ

Photo electric effect equation is given by;
E = W₀ + K.E
Where;
K.E is the kinetic energy of the emitted electron
K.E = E - W₀
K.E = 15.291 x 10⁻¹⁹ J - 6.728 x 10⁻¹⁹ J
K.E = 8.563 x 10⁻¹⁹ J
Kinetic energy of the emitted electron is given by;
K.E = ¹/₂mv²
where;
m is mass of the electron = 9.11 x 10⁻³¹ kg
v is the speed of the electron

Therefore, the speed of the electron is 1.371 x 10⁶ m/s.