Answer:
8050 J
Explanation:
Given:
r = 4.6 m
I = 200 kg m²
F = 26.0 N
t = 15.0 s
First, find the angular acceleration.
∑τ = Iα
Fr = Iα
α = Fr / I
α = (26.0 N) (4.6 m) / (200 kg m²)
α = 0.598 rad/s²
Now you can find the final angular velocity, then use that to find the rotational energy:
ω = αt
ω = (0.598 rad/s²) (15.0 s)
ω = 8.97 rad/s
W = ½ I ω²
W = ½ (200 kg m²) (8.97 rad/s)²
W = 8050 J
Or you can find the angular displacement and find the work done that way:
θ = θ₀ + ω₀ t + ½ αt²
θ = ½ (0.598 rad/s²) (15.0 s)²
θ = 67.3 rad
W = τθ
W = Frθ
W = (26.0 N) (4.6 m) (67.3 rad)
W = 8050 J
False<span>, well designed weight training programs actually target most of the muscles in the body. A good weight training program includes many compound exercises to activate multiple muscle groups and promote muscle hypertrophy. Some isolation exercises may also be included to target a specific muscle and help it grow.</span>
Answer:
40000 J or 40 kJ
Explanation:
Work is the net force times the distance.
W = Fd
W = (1000 N) (40 m)
W = 40000 J
Notice that the time doesn't affect the amount of work done.
The fuel will be for all the city is 2,000 kilograms