No, resolve in both directions separately
The compound is (Sulphuric Acid) H2SO4. On reacting with (Sodium Hydroxide) NaOH, it gives (2 Water Molecules/Colored) 2H2O and (1 Sodium Sulfate Molecule/Salt) Na2SO4
H2SO4 + NaOH —> 2H2O (aq.) + Na2SO4 (salt)
The resulted salt/compound (Na2SO4) when reacting with Methyl Orange (MO) is called ”Removal of methyl orange dye and Na2SO4 salt from synthetic wastewater using reverse osmosis (RO)”
The efficiency of reverse osmosis (RO) membranes used for treatment of colored water effluents can be affected by the presence of both salt and dyes.
Concentration polarization of each of the dye and the salt and the possibility of a dynamic membrane formed by the concentrated dye can affect the performance of the RO membrane.
The objective of the current work was to study the effect of varying the Na2SO4 salt and methyl orange (MO) dye concentrations on the performance of a spiral wound polyamide membrane.
The work also involved the development of a theoretical model based on the solution diffusion (SD) mass transport theory that takes into consideration a pressure dependent dynamic membrane resistance as well as both salt and dye concentration polarizations.
Control tests were performed using distilled water, dye/water and salt/water feeds to determine the parameters for the model.
The experimental results showed that increasing the dye concentration from 500 to 1000 ppm resulted in a decrease in the salt rejection at all of the operating pressures and for both feed salt concentrations of 5000 and 10,000 ppm.
Increasing the salt concentration from 5000 to 10,000 ppm resulted in a slight decrease in the percent dye removal. The model’s results agreed well with these general trends.
The magnitude of the acceleration of the ball while coming to rest is 477.43 m/s²
The direction of the acceleration of the ball is downwards
The given parameters
initial velocity of the ball, u = 0
height above the ground, h = 2.2 m
time of motion of the ball, t = 96 ms = 0.096 s
The magnitude of the acceleration of the ball while coming to rest is calculated as;
let the downwards direction of the acceleration be positive

The direction of the acceleration of the ball is downwards
Learn more here: brainly.com/question/15407740
Answer:
E = 2,964 10⁻¹⁹ J
Explanation:
The energy of the photons is given by the Planck relation
E = h f
the speed of light is related to wavelength and frequency
c = λ f
we substitute
E = h c /λ
let's reduce the magnitude to the SI system
λ = 671 nm = 671 10⁻⁹ m
let's calculate
E = 6.63 10⁻³⁴ 3 10⁸ /671 10⁻⁹
E = 2,964 10⁻¹⁹ J
Answer:
Part a)

Part b)

Part c)

Explanation:
As we know that acceleration is rate of change in velocity of the object
So here we know that


Part a)
differentiate x and y two times with respect to time to find the acceleration






Now the acceleration of the object is given as

at t= 1.1 s we have

now the net force of the object is given as



now magnitude of the force will be

Part b)
Direction of the force is given as



Part c)
For velocity of the particle we have




now at t = 1.1 s

now the direction of the velocity is given as


