Answer:
u = 104.68 m/s
Explanation:
given,
horizontal distance = 150 m
elevation of 12.4 m
angle = 8.6°
horizontal motion = x = u cos θ. t .............(1)
vertical motion =
................(2)
from equation(1) and (2)
..........{3}




u = 104.68 m/s
The initial speed of the ball is u = 104.68 m/s
Troposphere, stratosphere, mesosphere, thermosphere, exosphere
Hi there!
We can begin by calculating the time taken to reach its highest point (when the vertical velocity = 0).
Remember to break the velocity into its vertical and horizontal components.
Thus:
0 = vi - at
0 = 16sin(33°) - 9.8(t)
9.8t = 16sin(33°)
t = .889 sec
Find the max height by plugging this time into the equation:
Δd = vit + 1/2at²
Δd = (16sin(33°))(.889) + 1/2(-9.8)(.889)²
Solve:
Δd = 7.747 - 3.873 = 3.8744 m
Answer:
They are written or edited by anyone
Explanation: