The impulse given to the ball is equal to the change in its momentum:
J = ∆p = (0.50 kg) (5.6 m/s - 0) = 2.8 kg•m/s
This is also equal to the product of the average force and the time interval ∆t :
J = F(ave) ∆t
so that if F(ave) = 200 N, then
∆t = J / F(ave) = (2.8 kg•m/s) / (200 N) = 0.014 s
Answer: D)supersaturated
Explanation: Solubility is defined as the amount of solute in grams which can dissolve in 100 g of the liquid to form a saturated solution at that particular temperature.
At
, the solubility of
is 153g/100 ml.
Thus if 180 grams is dissolved, it contains more amount of solute than it can hold at that that temperature, and thus is supersaturated solution.
A saturated solution is a solution containing the maximum concentration of a solute dissolved in the solvent. The additional solute does not dissolve in a saturated solution.
An unsaturated solution is solution in which the solute concentration is lower than its equilibrium solubility.
A supersaturated solution is one that has more solute than it can hold at a certain temperature.
That's wave 'diffraction'.
Answer:
7.468 kN
Explanation:
Here the force is given in Newton
Some of the prefixes of the SI units are
kilo = 10³
Mega = 10⁶
Giga = 10⁹
Tera = 10¹²
The number is 7468.0
Here, the only solution where the number of significant figures is kilo. If any other prefix is chosen then the significant figures will increase.
1 kilonewton = 1000 Newton


So, 7468 N = 7.468 kN