Answer:41.991ml
Explanation:
Equations: 2 H2O → 4H+ + 4e + O2 OXIDATION
2 H+ + 2e → H2 REDUCTION
Electrolysis is the chemical decomposition of compounds when electricity is made to pass through a molten compound or solution.
from the oxidation reaction:
1moles of oxygen requires 4moles of electrons to be discharged at the product
F=96500C/mol
Quantity of charge Q=It
=60*60*0.201A
Q=723.6C
Mole=Q/(F*mole ratio of electron)
Mole= 723.6/(4*96500)
Mole=((1809)/(965000))
M=0.0018746114
M1/M2=V1/V2
1/0.00187=22.4dm^3/V2
V2=22.4*0.00187
V2=0.04199129534dm^3
41.99129534ml
(3) 8.3 N/kg. The gravitational field strength at a point is the force per unit mass exerted on a mass placed at that point. So at the point where the Hubble telescope is, it is (9.1 x 10^4)N/(1.1 x 10^4 kg) = 8.3 N/kg
Fam
How much work in J does the string do on the boy if the boy stands still?
<span>answer: None. The equation for work is W = force x distance. Since the boy isn't moving, the distance is zero. Anything times zero is zero </span>
<span>--------------------------------------... </span>
<span>How much work does the string do on the boy if the boy walks a horizontal distance of 11m away from the kite? </span>
<span>answer: might be a trick question since his direction away from the kite and his velocity weren't noted. Perhaps he just set the string down and walked away 11m from the kite. If he did this, it is the same as the first one...no work was done by the sting on the boy. </span>
<span>If he did walk backwards with no velocity indicated, and held the string and it stayed at 30 deg the answer would be: </span>
<span>4.5N + (boys negative acceleration * mass) = total force1 </span>
<span>work = total force1 x 11 meters </span>
<span>--------------------------------------... </span>
<span>How much work does the string do on the boy if the boy walks a horizontal distance of 11m toward the kite? </span>
<span>answer: same as above only reversed: </span>
<span>4.5N - (boys negative acceleration * mass) = total force2 </span>
<span>work = total force2 x 11 meters</span>
Your answer is 20
just take 1,200 divided by 60 [second] :)