The molarity is count by dividing the mole of the solute within 1 liter of solvent. In this case, the KNO3 is 16.8g with 101.11 g/mol molar mass. Then we need to find the mol first. The calculation would be: 16.8g / (101.11g/mol)= 0.0166 mol.
Then the molarity would be: 0.0166mol/ 0.3l= 0.0498= 0.0553 M
Answer:
The new volume of the gas remains the same. That is new volume of gas is 1.33 litres
Explanation:
This is because gases do not have a definite shape. They therefore take the shape of their containing vessels and hence their volumes are determined by the volume of the container.
For the question above even if some of the gas escapes, as long as there is gas present in the container, its volume remains the same, that is occupies the same space in the container
Answer:
F₂ (g) + FeI₂ (aq) → FeF₂ (aq) + I₂ (l)
Explanation:
Our reactants are:
F₂ → Fluorine gas, a dyatomic molecule
FeI₂ → Iron (II) iodine
Our products are:
I₂ → Iodine
FeF₂ → Iron (II) fluoride
Then, the reaction is:
F₂ (g) + FeI₂ (aq) → FeF₂ (aq) + I₂ (l)
We see it is completely balanced.
Answer:
B
Explanation:
the group number is=valence electrons. element 1 is in group 1 element 18 is in group 8. 1<8