Answer:
Explanation:
The trick here is to realize that if you know the volume of a gas at STP, you can use the fact that
1
mole of any ideal gas occupies
22.7 L
under STP conditions to calculate how many moles of gas you have in your sample.
Under STP conditions:
1 mole of an ideal gas = 22.7 L
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
In your case, you know that your sample of gas occupies
2.28 L
under STP conditions, which are currently defined as a pressure of
100 kPa
and a temperature of
0
∘
C
.
This means that your sample will contain
2.28
L
⋅
molar volume of a gas at STP
1 mole gas
22.7
L
=
0.10044 moles gas
Now, the molar mass of the gas is the mass of exactly
1
mole of the gas. In your case, you know that you get
3.78 g
for every
0.10044
moles, which means that you have
1
mole
⋅
3.78 g
0.10044
moles
=
37.6 g
Since this is the mass of
1
mole of gas, you can say that the molar mass of the gas is
molar mass = 37.6 g mol
−
1
−−−−−−−−−−−−−−−−−−−−−−−
1.66 M is the concentration of the chemist's working solution.
<h3>What is molarity?</h3>
Molarity (M) is the amount of a substance in a certain volume of solution. Molarity is defined as the moles of a solute per litres of a solution. Molarity is also known as the molar concentration of a solution.
In this case, we have a solution of Zn(NO₃)₂.
The chemist wants to prepare a dilute solution of this reactant.
The stock solution of the nitrate has a concentration of 4.93 M, and he wants to prepare 620 mL of a more dilute concentration of the same solution. He adds 210 mL of the stock and completes it with water until it reaches 620 mL.
We want to know the concentration of this diluted solution.
As we are working with the same solution, we can assume that the moles of the stock solution will be conserved in the diluted solution so:
=
(1)
and we also know that:
n = M x 
If we replace this expression in (1) we have:
x
=
x 
Where 1, would be the stock solution and 2, the solution we want to prepare.
So, we already know the concentration and volume used of the stock solution and the desired volume of the diluted one, therefore, all we have to do is replace the given data in (2) and solve for the concentration which is
:
4.93 x 210 = 620 x
= 1.66 M
This is the concentration of the solution prepared.
Learn more about molarity here:
brainly.com/question/19517011
#SPJ1
Number of molecules NH₃ = 4.45 x 10²²
<h3>Further explanation
</h3>
A mole is a number of particles(atoms, molecules, ions) in a substance
This refers to the atomic total of the 12 gr C-12 which is equal to 6.02.10²³, so 1 mole = 6.02.10²³ particles
Can be formulated :
N = n x No
N = number of particles
n = mol
No = 6.02.10²³ = Avogadro's number
mol of NH₃ = n = 0.074
So the number of molecules :

Answer:
0.75 cal/g°c
Explanation:
for specific heat we have formula:
Amount of heat absorbed or released = mass x specific heat of a substance x change in temperature.
ΔQ=m x c x ΔT
where c= specific heat
m= mass of a substance
ΔT = total temperature
ΔQ = Amount of heat
so for specific heat,
c= ΔQ/mxΔT
c= 280/25x (25-10)
c= 280/375
c= 0.75 cal/g°c
277.79 atm is the calculated gas pressure.
The ideal gas is a fictitious concept used to study how real gases behave by comparing them to their deviations. The pressure-temperature rules are followed by an ideal gas.
177 atm is the initial pressure. The starting temperature is 298 K (25 °C = 25 + 273 °C).
195°C = 195+273
= 468K is the final temperature.
The pressure temperature relation illustrated below can be used to get the final pressure.
P1/T1 = P2/T1
= P1T2/T1
= 177 atm 468 K /298 K
= 277.97 atm
The final pressure is therefore 277.97 atm.
Learn more about Pressure here-
brainly.com/question/4578923
#SPJ4