1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
victus00 [196]
3 years ago
7

What is this problem ?

Mathematics
1 answer:
kvv77 [185]3 years ago
5 0
5^4/5
Multiply the number by it's exponent
625/5
Divide
Final Answer: 125
You might be interested in
Which pair of lines appears to be perpendicular?<br> ОА.<br> +XI<br> B
Rasek [7]
It’s the last one because yeah
8 0
3 years ago
Pleaseeeeeeeeeee helllllllllpppppppppppp​
Tpy6a [65]

Answer:

a)16      (2*2*2*2= 16)

b)16  (-4*-4-16)(-+-=+)

c)500 (5*5*5=125        125*4=500)

d)0.49  (0.7*07)

e)480  (4^=16     9^=81  121^0=1          16+81 -1 =96     96*5=480)

f)5^2  or 25 (a^m/ a^n=a^m-n)

g) 11^14 (reason same as the f one)

h)8.20

i) 4(-4*16=64)

j)900

7 0
3 years ago
7. For a school fundraiser, Elena will make T-shirts. She will order T-shirts and print graphics on them. Elena must spend $349
MrRa [10]

Answer: a)

20 shirts | 349 + 20(4.8)

40 shirts | 349 + 40(4.8)

60 shirts | 349 + 60(4.8)

b) Tn = 349 + n(4.8)

c) (1000 - 349)/4.8  rounded down.

7 0
2 years ago
Can someone explain to me step by step how to do -2.5 x -20.
zavuch27 [327]

Answer:

50

Step-by-step explanation:

-2.5 × -20

negative multiply negative equals positive

(-) × (-) = (+)

so, the answer would be positive.

-2.5 × -20

= <u>5</u><u>0</u>

8 0
2 years ago
John wants to make a 100 ml of 6% alcohol solution mixing a quantity of a 3% alcohol solution with an 8% alcohol solution. What
mart [117]

Answer:

-50 ml of 3% alcohol solution and 150 ml of 8% alcohol solution

Step-by-step explanation:

For us to solve this type of mixture problem, we must represent the problem in equations. This will be possible by interpreting the question.

Let the original volume of the first alcohol solution be represented with x.

The quantity of the first alcohol solution needed for the mixture is 3% of x

                   ⇒ \frac{3}{100} * x

                       = 0.03x

Let the original volume of the second alcohol solution be represented with y.

The quantity of the second alcohol solution needed for the mixture is 5% of y

                   ⇒ \frac{5}{100} * y

                       = 0.05y

The final mixture of alcohol solution is 6% of 100 ml

                 ⇒ \frac{6}{100} * 100 ml

                       = 6 ml

Sum of values of two alcohol solutions = Value of the final mixture

                     0.03x + 0.05y = 6 ml               ..........(1)

Sum of original quantity of each alcohol solution = Original volume of the of mixture

                     x + y = 100 ml                          ..........(2)      

For easy interpretation, I will be setting up a table to capture all information given in the question.

Component                       Unit Value      Quantity(ml)       Value

3% of Alcohol solution        0.03                 x                     0.03x

8% of Alcohol solution        0.08                 y                     0.08y

Mixture of 100ml of 6%        0.06               100                       6    

                                                                x + y = 100       0.03x + 0.08y =6

Looking at the equations we derived, we have two unknowns in two equations which is a simultaneous equation.

                                0.03x + 0.05y = 6 ml               ..........(1)

                                x + y = 100 ml                           ..........(2)    

Using substitution method to solve the simultaneous equation.

Making x the subject of formula from equation (2), we have,

                                x  = 100 - y                                 ..........(3)

Substituting  x  = 100 - y from equation (3) into equation (1)

                               0.03(100 - y) + 0.05y = 6  

                               3 - 0.03y + 0.05y = 6  

Rearranging the equation,            

                               0.05y - 0.03y = 6 - 3

                               0.02y = 3

                               y = \frac{3}{0.02}

                               y = 150 ml

Substituting y = 150 ml into equation (3) to get x

                              x  = 100 - 150 ml

                              x = - 50 ml

The quantity of the first alcohol solution needed for the mixture for 3% is - 50 ml

The quantity of the second alcohol solution needed for the mixture for 5% is 150 ml

This solution means 50 ml of the first alcohol solution must be removed from the mixture with 150 ml of the second alcohol solution to get a final mixture of 100 ml of 6% alcohol solution.

3 0
3 years ago
Other questions:
  • I am a stupid person. I do not know the answer to this. Please help.
    9·1 answer
  • tim bought 4 new baseball trading cards to add to his collection. The next day his dog ate half of his collection. There are now
    15·2 answers
  • Whats 455 x 5<br> ?????????????????????
    15·2 answers
  • What are exponent rules?
    10·1 answer
  • FIRST TO ANSWER GETS BRAINLIEST! I dont get polynomials, so im confuzed. Help!
    12·2 answers
  • To 6x - 5(2x - 4) = 3x - 6?
    5·1 answer
  • The triangle below has a total perimeter of 450 cm:
    5·1 answer
  • A ___ is a rule that assigns each value of the independent variable to exactly
    14·1 answer
  • Is x= 6 a solution to the equation –18 = -2(x + 3)?
    10·2 answers
  • What is the perimeter of a 12 cm and 4cm
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!