Spinning top, moving car, and rolling ball have kinetic energy I believe
Answer:
Chelate, any of a class of coordination or complex compounds consisting of a central metal atom attached to a large molecule, called a ligand, in a cyclic or ring structure. An example of a chelate ring occurs in the ethylenediamine-cadmium complex:
The ethylenediamine ligand has two points of attachment to the cadmium ion, thus forming a ring; it is known as a didentate ligand. (Three ethylenediamine ligands can attach to the Cd2+ ion, each one forming a ring as depicted above.) Ligands that can attach to the same metal ion at two or more points are known as polydentate ligands. All polydentate ligands are chelating agents.
Chelates are more stable than nonchelated compounds of comparable composition, and the more extensive the chelation—that is, the larger the number of ring closures to a metal atom—the more stable the compound. This phenomenon is called the chelate effect; it is generally attributed to an increase in the thermodynamic quantity called entropy that accompanies chelation. The stability of a chelate is also related to the number of atoms in the chelate ring. In general, chelates containing five- or six-membered rings are more stable than chelates with four-, seven-, or eight-membered rings.
Explanation:
Answer is: A) The solution turns blue litmus to red.
Sulfuric acid (H₂SO₄) is a strong acid, it means that the solution of sufuric acid is more acidic (pH<7) than water (pH = 7).
Chemical dissociation of sulfuric acid in water:
H₂SO₄(aq) → 2H⁺(aq) + SO₄²⁻(aq).
When solution turns phenolphthalein pink, it means it is basic (pH>7).
Sulfuric acid has more hydrogen ions (H⁺) and less hydroxide ions (OH⁻) than water.
1 molecule of NaCl contains 1 sodium ion (Na+), that's why if we have 3.0 moles of.
NaCl, we have 3.0 moles of Na+.
N(ions) = n(mol) · NA.
N(ions) = 3.0 moles · 6.02·1023 = 18.06 ·1023 ions.
Molar mass of vitamin B1, C12H17N4OS = 265.34 g/ mol
Molar mass of vitamin B2, C17H20N4O6 = 376.37 g/ mol
Molar mass of vitamin B5, C9H17NO5 = 219.24 g/ mol
Molar mass of vitamin B6, C8H11NO3 = 169.18 g/ mol
Molar mass of vitamin B7, C10H16N2O3S = 244.31 g/ mol
Now,
Order of increasing molar mass = B6 < B5 < B7 < B1 < B2