Answer:
option A
an increase in entropy and a decrease in enthalpy
pls mark brainliest
Answer:
Average atomic mass of chlorine is 35.48 amu.
Explanation:
Given data:
Percent abundance of Cl-35 = 76%
Percent abundance of Cl-37 = 24%
Average atomic mass = ?
Solution:
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass = (76×35)+(24×37) /100
Average atomic mass = 2660 + 888 / 100
Average atomic mass = 3548/ 100
Average atomic mass = 35.48 amu
Average atomic mass of chlorine is 35.48 amu.
Answer:
its A
Explanation:
The definition of color is a component of light which is separated when it is reflected off of an object. The appearance of objects or light sources described in terms of the individual's perception of them, involving hue, lightness, and saturation for objects, and hue, brightness, and saturation for light sources.
Answer:
See explanation
Explanation:
The reaction between alcohol and acidified potassium dichromate is a redox reaction. This reaction can be used to detect a drunken driver.
Alcohols can be oxidized to aldehydes, ketones and carboxylic acids depending on the structure of the alcohol. Primary alcohols yield adehydes and carboxylic acids while secondary alcohols are oxidized to ketones.
The colour of the acidified potassium dichromate turns from orange to green when exposed to alcohols from the breath of a drunken driver.
Answer:
8.625 grams of a 150 g sample of Thorium-234 would be left after 120.5 days
Explanation:
The nuclear half life represents the time taken for the initial amount of sample to reduce into half of its mass.
We have given that the half life of thorium-234 is 24.1 days. Then it takes 24.1 days for a Thorium-234 sample to reduced to half of its initial amount.
Initial amount of Thorium-234 available as per the question is 150 grams
So now we start with 150 grams of Thorium-234





So after 120.5 days the amount of sample that remains is 8.625g
In simpler way , we can use the below formula to find the sample left

Where
is the initial sample amount
n = the number of half-lives that pass in a given period of time.