Answer:
The equation is Fe₂O₃ + CO ⇒ Fe + CO₂.
The balanced reaction equation is Fe₂O₃ + 3CO ⇒ 2Fe + 3CO₂.
Explanation:
First, we have to write our equation. It's actually pretty straightforward - first we look for our reactants (looks like it's Fe₂O₃ and CO), then we look for our products (Fe and CO₂). Then, we have to balance it so that both sides have the same number of both element.
Currently, we have the equation Fe₂O₃ + CO ⇒ Fe + CO₂. There are 2 Fe atoms, 4 O atoms, and 1 C atom on the left side. There is 1 Fe atom, 2 O atoms, and 1 C atom on the right side.
First thing we can do is give our Fe on the right side a coefficient of 2. This will make it equivalent to the 2 Fe atoms on the left side:
Fe₂O₃ + CO ⇒ 2Fe + CO₂
Next, we need to make sure that we have the same number of C and O atoms on each side. This takes a little bit of thinking, but what we have to do is give CO a coefficient of 3 and CO₂ a coefficient of 3. This gives us 6 O atoms on the left side (when we include the O₃) and 6 O atoms on the right side (since there are 3 O₂ atoms and 3 times 2 is 6). Here's what that looks like:
Fe₂O₃ + 3CO ⇒ 2Fe + 3CO₂
And that's how I balanced the equation. It can be confusing, but with enough practice, it will get easier and easier. :)
1.Electrons can be transferred from one atom to another.
2.Electrons can be shared between neighbouring atoms.
3.Electrons can be shared with all atoms in a material.
Answer:
The new equilibrium concentration of HI: <u>[HI] = 3.589 M</u>
Explanation:
Given: Initial concentrations at original equilibrium- [H₂] = 0.106 M; [I₂] = 0.022 M; [HI] = 1.29 M
Final concentrations at new equilibrium- [H₂] = 0.95 M; [I₂] = 0.019 M; [HI] = ? M
<em>Given chemical reaction:</em> H₂(g) + I₂(g) → 2 HI(g)
The equilibrium constant (
) for the given chemical reaction, is given by the equation:
![K_{c} = \frac {[HI]^{2}}{[H_{2}]\: [I_{2}]}](https://tex.z-dn.net/?f=K_%7Bc%7D%20%3D%20%5Cfrac%20%7B%5BHI%5D%5E%7B2%7D%7D%7B%5BH_%7B2%7D%5D%5C%3A%20%5BI_%7B2%7D%5D%7D)
<u><em>At the original equilibrium state:</em></u>

<u><em>Therefore, at the new equilibrium state:</em></u>
![\Rightarrow [HI]^{2} = 713.59 \times 0.01805 = 12.88](https://tex.z-dn.net/?f=%5CRightarrow%20%5BHI%5D%5E%7B2%7D%20%3D%20713.59%20%5Ctimes%200.01805%20%3D%2012.88)
![\Rightarrow [HI] = \sqrt {12.88} = 3.589 M](https://tex.z-dn.net/?f=%5CRightarrow%20%5BHI%5D%20%3D%20%5Csqrt%20%7B12.88%7D%20%3D%203.589%20M)
<u>Therefore, the new equilibrium concentration of HI: [HI] = 3.589 M</u>
Answer:
<h2>120 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 8 × 15
We have the final answer as
<h3>120 N</h3>
Hope this helps you