Explanation:
In the given situation two forces are working. These are:
1) Electric force (acting in the downward direction) = qE
2) weight (acting in the downward direction) = mg
Therefore, work done by all the forces = change in kinetic energy
Hence,
It is known that the weight of electron is far less compared to electric force. Therefore, we can neglect the weight and the above equation will be as follows.

v = 
= 592999 m/s
Since, the electron is travelling downwards it means that it looses the potential energy.
I’m just answering questions
Answer
Hi,
correct answer is {D} 3.5 m/s²
Explanation
Acceleration is the rate of change of velocity with time. Acceleration can occur when a moving body is speeding up, slowing down or changing direction.
Acceleration is calculated by the equation =change in velocity/change in time
a= {velocity final-velocity initial}/(change in time)
a=v-u/Δt
The units for acceleration is meters per second square m/s²
In this example, initial velocity =2.0m/s⇒u
Final velocity=44.0m/s⇒v
Time taken for change in velocity=12 s⇒Δt
a= (44-2)/12 = 42/12
3.5 m/s²
Best Wishes!
Gravitational potential energy is equal to (mgh) so 1.5•9.8•200=2940
Or C
Potential energy is energy that is found in a system, grounded on the position of objects. The Coulomb (C) is the unit of charge, and the unit of electric potential is the Volt (V), which is equivalent to (J/C) or Joule per Coulomb.So the formula for this is potential = kQ / d, plugging in the given from the questions will give us:potential = 8.99e9N·m²/C² * 1.602e-19C / 0.053e-9m = 27 V