If you do this on Earth, then the acceleration of the falling object is 9.8 m/s^2 ... NO MATTER what it's mass is.
If its mass is 10 kg, then the force pulling it down is 98.1 Newtons. Most people call that the object's "weight".
Power output = V*I=11000*750=8250 kVA= 8250 kW
Answer: 3 radians/meter.
Explanation:
The general sinusoidal function will be something like:
y = A*sin(k*x - ω*t) + C
Where:
A is the amplitude.
k is the wave number.
x is the spatial variable
ω is the angular frequency
t is the time variable.
C is the mid-value.
The rule that we can use to solve this problem, is that the argument of the sin( ) function must be in radians (or in degrees)
Then if x is in meters, the wave-number must be in radians/meters, so when these numbers multiply the "meters" part is canceled.
Then for the case of the function:
y(x,t) = 0.1 sin(3x + 10t)
Where x is in meters, the units of the wave number (the 3) must be in radians/meters. Then the angular wave number is 3 radians/meter.
The friction between the two objects creates heat.
The time
it takes for the key to fall 44 m is

(notice I'm taking the downward direction to be positive)
The boat, moving at a presumably constant speed, then has 3.0 s to travel 19 m to the point of impact, which means its speed must be
