<u>Answer:</u>
<em>The amount of energy needed when water at 72 degrees c freezes completely at 0 degrees c is
Joules</em>
<em></em>
<u>Explanation:</u>

where
= Final T - Initial T

=30125J
Q is the heat energy in Joules
c is the specific heat capacity (for water 1.0 cal/(g℃)) or 4.184 J/(g℃)
m is the mass of water
mass of water is assumed as 100 g (since not mentioned)
is the heat energy required for the phase change
=mass × heat of fusion

Total heat =
Total Heat = 30123J + 33600J
= 63725 J
=
Joules is the answer
An exergonic reaction proceeds with net release of free energy.
An endergonic reaction absorbs free energy
Answer:
2.2 x 10²² molecules.
Explanation:
- Firstly, we need to calculate the no. of moles in (6.0 g) sodium phosphate:
<em>no. of moles = mass/molar mass </em>= (6.0 g)/(163.94 g/mol) = <em>0.0366 mol.</em>
- <em>It is known that every mole of a molecule contains Avogadro's number (6.022 x 10²³) of molecules.</em>
<em />
<u><em>using cross multiplication:</em></u>
1.0 mole of sodium phosphate contains → 6.022 x 10²³ molecules.
0.0366 mole of sodium phosphate contains → ??? molecules.
<em>∴ The no. of molecules in 6.0 g of sodium phosphate</em> = (6.022 x 10²³ molecules)(0.0366 mole)/(1.0 mole) = <em>2.2 x 10²² molecules.</em>
Answer:
0.0055 mol of N2O5 will remay after 7 min.
Explanation:
The reaction follows a first-order.
Let the concentration of N2O5 after 7 min be y
Rate = Ky = change in concentration of N2O5/time
K is rate constant = 6.82×10^-3 s^-1
Initial concentration of N2O5 = number of moles/volume = 2.1×10^-2/1.8 = 0.0117 M
Change in concentration = 0.0117 - y
Time = 7 min = 7×60 = 420 s
6.82×10^-3y = 0.0117 - y/420
0.0117 - y = 420×6.82×10^-3y
0.0117 - y = 2.8644y
0.0117 = 2.8644y + y
0.0117 = 3.8644y
y = 0.0117/3.8644 = 0.00303 M
Number of moles of N2O5 left = y × volume = 0.00303 × 1.8 = 0.0055 mol (to 2 significant digits)