Answer:
The answer is
<h2>1.45 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass of material = 5.01 g
volume = 3.46 mL
The density of the material is

We have the final answer as
<h3>1.45 g/mL</h3>
Hope this helps you
Answer:
Ionic substance
Explanation:
An ionic substance is formed when oppositely charged ions link up to form an infinitely large lattice structure that can only be described in terms of unit cells.
Ionic substances may consist of billions of oppositely charged ions. Ionic substances are hard, have high melting and boiling points and do not conduct electricity in the solid state because the ions are not free in the solid state.
However, in solution or molten state, the substance conducts electricity since the ions which are the charge carriers are now mobile.
Answer:
strong enough to hold molecules relatively close together but not strong enough to keep molecules from moving past each other.
Explanation:
In liquids, the attractive intermolecular forces are <u>strong enough to hold molecules relatively close together but not strong enough to keep molecules from moving past each other</u>.
Intermolecular forces are the forces of repulsion or attraction.
Intermolecular forces lie between atoms, molecules, or ions. Intramolecular forces are strong in comparison to these forces.
<u />
194.5 g of BCl₃ is present in 1 × 10²⁴ molecules of BCl₃.
Explanation:
In order to convert the given number of molecules of BCl₃ to grams, first we have to convert the molecules to moles.
It is known that 1 moles of any element has 6.022×10²³ molecules.
Then 1 molecule will have
moles.
So 
Thus, 1.66 moles are included in BCl₃.
Then in order to convert it from moles to grams, we have to multiply it with the molecular mass of the compound.
As it is known as 1 mole contains molecular mass of the compound.
As the molecular mass of BCl₃ will be

Mass of boron is 10.811 g and the mass of chlorine is 35.453 g.
Molar mass of BCl₃ = 10.811+(3×35.453)=117.17 g.


So, 194.5 g of BCl₃ is present in 1 × 10²⁴ molecules of BCl₃.
Explanation:
no of moles = no of atoms ÷ avogadro's number
= (9.8×10^24) ÷ (6.02×10^23)