Answer:
i). Inverted
ii). Magnification of the image = -0.5
iii). Real
Explanation:
As shown in the ray diagram attached,
An object AB has been placed in front of converging lens (convex lens) at u = 30 cm.
F (Focus) of the lens is at 10 cm. So F = 10 cm
By analyzing the ray diagram we can measure the distance of the image on the other side of the lens (By counting the small blocks of the graph)
V = 15 cm
Characteristics of the image is:
i) Inverted
ii) Magnification of the image = 
= -0.5
ii) Real
Answer:
Explanation:
capacitance of sphere 2 will be 4.5 times sphere 1
a ) when spheres are in contact they will have same potential finally . So
V_1 / V_2 = 1
b )
Charge will be distributed in the ratio of their capacity
charge on sphere1 = q x 1 / ( 1 + 4.5 )
= q / 5.5
fraction = 1 / 5.5
c ) charge on sphere 2
= q x 4.5 / 5.5
fraction = 4.5 / 5.5
d ) surface charge density of sphere 1
= q /( 5.5 x A ) where A is surface area
surface charge density of sphere 2
= q x 4.5 /( 5.5 x 4.5² A ) where A is surface area
= q /( 5.5 x 4.5 A )
q_1/q_2 = 4.5
Answer:
40 N/m
Explanation:
F = -kx (This is the Hooke's Law equation)
F is the force the spring exerts = 8 N
-k = spring constant
x = displacement (The distance stretched past it's natural length) = 20cm
x needs to be in meters, and 20 cm is = to 0.2 meters
Finally:
8N = -k (0.2m)
-k = 8N / 0.2 m
k = -40 N/m
It is a solid when is frozen and a liquid when it melts
Answer:
Explanation:
Component of force perpendicular to stick
= F Sin 60°
=√3 / 2 F.
Taking torque about the other end
= √3 / 2 F x 1 Nm
Weight of stick = 60 gm
= 60 x 10⁻³ kg
= 60 x 10⁻³ x 9.8 N
= .588 N
This weight will act from the middle point of stick so torque about the
other end
= .588 x 1 Nm
Balancing these two torques we have
.588 = √3 /2 F

F = 0.679 N