Answer:
We can also prove the conservation of mechanical energy of a freely falling body by the work-energy theorem, which states that change in kinetic energy of a body is equal to work done on it. i.e. W=ΔK. And ΔE=ΔK+ΔU. Hence the mechanical energy of the body is conserved
Explanation:
26 m/s for fifteen seconds. distance = rate times time, so distance = 26 m/s * 15 seconds. this gives you distance = 390 meters.
Melting, as igneous rock is magma or lava that has cooled and hardened.
The amount of movement, linear momentum, momentum or momentum is a physical quantity derived from a vector type that describes the movement of a body in any mechanical theory. In classical mechanics, the amount of movement is defined as the product of body mass and its velocity at a given time.
p= mv
Where,
m = mass
v = Velocity
Our values are given as,


Replacing we have that,


Therefore the momentum is 
Explanation:
This happens because the gas inside tend to expand because its temperature gets higher.
This is why the balloon that is put in a freezer for too long tend to gets smaller, because the gas temperature that is inside the balloon decreases.
(you can try it at home)
It is related to the temperature of the gas.