using the law of refraction, the incidence is equal to the reflection, but not refraction
The impulse imparted to the shells equals the change in the momentum:
Fav*(Delta t)= Delta m*v.
The mass change is
Delta m= n*m= (89.9shells)*(88.7g)=7.97Kg
So the average force is
F=((v)*(Delta m))/t= ((929)*(7.97))/4.84=1529.78 N
Since the velocity of the shells is much greater than the velocity of the helicopter, there is no need to use relative velocity.
Answer:
Directly Proportional
Explanation:
Gravitational force can be calculated with the equation F = g(m1 * m2)/ r^2
So if we increase mass, force will also increase because mass is in the numerator.
Answer:
(a) 
(b) 
Explanation:
Given data

Solution
For Part (a)
As the velocity component in direction of y is given by:

The maximum displacement is given by:

For Part (b)
To reach y=46cm =0.46m apply:
