A. Average speed is weighted mean (1 × 2 + 2 × 3 + 3 × 5 + 4 × 7 + 3 × 9 + 2 × 12.5)/15 = (2 + 6 + 15 + 28 + 27 + 25)/15 = 103/15 = 6.867 b. RMS is square root of 1/15 times sum of squares of speeds Sum of squares is 4 + 9 + 9 + 25 + 25 + 25 + 49 + 49 + 49 + 49 + 81 + 81 + 81 +156.25 + 156.25 = 848.5
c. RMS speed = √(848.5/15) = 7.521
Most likely the speed is the peak in the speed distribution, which is 7.
Answer:
a) 
b) 
c) 
d) Displacement = 22 m
e) Average speed = 11 m/s
Explanation:
a)
Notice that the acceleration is the derivative of the velocity function, which in this case, being a straight line is constant everywhere, and which can be calculated as:

Therefore, acceleration is 
b) the functional expression for this line of slope 4 that passes through a y-intercept at (0, 3) is given by:

c) Since we know the general formula for the velocity, now we can estimate it at any value for 't", for example for the requested t = 1 second:

d) The displacement between times t = 1 sec, and t = 3 seconds is given by the area under the velocity curve between these two time values. Since we have a simple trapezoid, we can calculate it directly using geometry and evaluating V(3) (we already know V(1)):
Displacement = 
e) Recall that the average of a function between two values is the integral (area under the curve) divided by the length of the interval:
Average velocity = 
The heat from the wick melts the wax which gets absorbed in the wick and then gets burnt (which is really oxidation) to produce heat energy<span> as well as light </span>energy. The energy<span> transforms from chemical </span>energy<span> to heat and light </span>energy<span>. Because when the </span>candle burns<span> a chemical reaction </span>occurs<span>, and produces heat and light.
</span>
<span>That could be letter B: flowchart. Flowchart diagrams
can be used to easily service an electronic circuit board with ICs because they
let you see the flow of the current as you could imagine it. You can use
different shapes to further your explanation and illustration on how the
electricity flows from a source, to its medium to the switches. You could also
decide on flowcharts and be able to see where that decision leads you and you
could also try to learn different decision methods which is basically
illustrated on the chart.</span>