Answer:
HF
H₂S
H₂CO₃
NH₄⁺
Explanation:
<em>Which acid in each of the following pairs has the stronger conjugate base?</em>
According to Bronsted-Lowry acid-base theory, <em>the weaker an acid, the stronger its conjugate acid</em>. Especially for weak acids, pKa gives information about the strength of such acid. <em>The higher the pKa, the weaker the acid.</em>
<em />
- Of the acids HCl or HF, the one with the stronger conjugate base is HF because it is a weak acid.
- Of the acids H₂S or HNO₂, the one with the stronger conjugate base is H₂S because it is a weaker acid. pKa (H₂S) = 7.04 > pKa (HNO₂) = 3.39
- Of the acids H₂CO₃ or HClO₄, the one with the stronger conjugate base is H₂CO₃ because it is a weak acid.
- Of the acids HF or NH₄⁺, the one with the stronger conjugate base is NH₄⁺ because it is a weaker acid. pKa (HF) = 3.17 < pKa (NH₄⁺) = 9.25
Physical Change
It is being changed by the sun
Answer:
d. 103.3
Explanation:
In the given question, the National Weather Service routinely supplies atmospheric pressure data to help pilots set their altimeters. And the units of atmospheric pressure used for reporting the atmospheric pressure data are inches of mercury. For a barometric pressure of 30.51 inches of mercury, we can calculate the pressure in kPa as follow:
In principle, 3.386 kPa is equivalent to the atmospheric pressure of 1 inch of mercury. Thus, 30.51 inches of mercury is equivalent to 30.51 in *(3.386 kPa/1 in) = 103.307 kPa.
Therefore, a barometric pressure of 30.51 inches of mercury corresponds to _____103.3_____ kPa.
Answer:
because the acid properties of aspirin may be problematic.
The answer to your question is,
Metalloids. They are a mix of elements that are both metals and non-metals in one.
-Mabel <3