Answer:

Explanation:
First, we will find actual properties at given inlet and outlet states by the use of steam tables:
AT INLET:
At 4MPa and 350°C, from the superheated table:
h₁ = 3093.3 KJ/kg
s₁ = 6.5843 KJ/kg.K
AT OUTLET:
At P₂ = 125 KPa and steam is saturated in vapor state:
h₂ =
= 2684.9 KJ/kg
Now, for the isentropic enthalpy, we have:
P₂ = 125 KPa and s₂ = s₁ = 6.5843 KJ/kg.K
Since s₂ is less than
and greater than
at 125 KPa. Therefore, the steam is in a saturated mixture state. So:

Now, we will find
(enthalpy at the outlet for the isentropic process):

Now, the isentropic efficiency of the turbine can be given as follows:

Answer:
a)W=12.62 kJ/mol
b)W=12.59 kJ/mol
Explanation:
At T = 100 °C the second and third virial coefficients are
B = -242.5 cm^3 mol^-1
C = 25200 cm^6 mo1^-2
Now according isothermal work of one mole methyl gas is
W=-
a=
b=
from virial equation

And

a=
b=
Now calculate V1 and V2 at given condition

Substitute given values
= 1 x 10^5 , T = 373.15 and given values of coefficients we get

Solve for V1 by iterative or alternative cubic equation solver we get

Similarly solve for state 2 at P2 = 50 bar we get

Now

a=241.33
b=30780
After performing integration we get work done on the system is
W=12.62 kJ/mol
(b) for Z = 1 + B' P +C' P^2 = PV/RT by performing differential we get
dV=RT(-1/p^2+0+C')dP
Hence work done on the system is

a=
b=
by substituting given limit and P = 1 bar , P2 = 50 bar and T = 373 K we get work
W=12.59 kJ/mol
The work by differ between a and b because the conversion of constant of virial coefficients are valid only for infinite series
Answer:
h = 287.1 m
Explanation:
the density of mercury \rho =13570 kg/m3
the atmospheric pressure at the top of the building is

the atmospheric pressure at bottom


we have also

1.18*9.81*h = (100.4 -97.08)*10^3
h = 287.1 m
Answer:
The shear strain is 0.05797 rad.
Explanation:
Shear strain is the ratio of change in dimension along the shearing load direction to the height of the plate under application of shear load. Width of the plate remains same. Length of the plate slides under shear load.
Step1
Given:
Height of the pad is 1.38 in.
Deformation at the top of the pad is 0.08 in.
Calculation:
Step2
Shear strain is calculated as follows:



For small angle of
,
can take as
.

Thus, the shear strain is 0.05797 rad.
Answer: A capacitor connected across the output allows the AC signal to pass through it and blocks the DC signal, thus acting as a high pass filter. The output across the capacitor is thus an unregulated filtered DC signal. This output can be used to drive electrical components like relays, motors, etc.
Explanation: