Answer:
The Bailey family has flourished during its business’ 110-year history. But Bailey Nurseries’ leaders still operate with the belief that the family doesn’t always know best. The company has grown from a one-man operation selling fruit trees and ornamental shrubs to one of the largest wholesale nurseries in the United States, thanks to insights from those who are family and those who aren’t.
“For a business to thrive, you have to ask for outside help,” says Terri McEnaney, president of the Newport-based company and a fourth-generation family member. “We get an outside perspective through family business programs, advisors and our board, because you can get a bit ingrained in your own way of thinking.”
When Bailey Nurseries chose its current leader in 2000, it brought in a facilitator who gathered insights from key employees, board members and owners. Third-generation leaders (and brothers) Gordie and Rod Bailey picked Rod’s daughter McEnaney, who had experience both inside and outside the company.
Explanation:
Answer:
The rate of heat generation in the wire per unit volume is 5.79×10^7 Btu/hrft^3
Heat flux is 9.67×10^7 Btu/hrft^2
Explanation:
Rate of heat generation = 1000 W = 1000/0.29307 = 3412.15 Btu/hr
Area (A) = πD^2/4
Diameter (D) = 0.08 inches = 0.08 in × 3.2808 ft/39.37 in = 0.0067 ft
A = 3.142×0.0067^2/4 = 3.53×10^-5 ft^2
Volume (V) = A × Length
L = 20 inches = 20 in × 3.2808 ft/39.37 in = 1.67 ft
V = 3.53×10^-5 × 1.67 = 5.8951×10^-5 ft^3
Rate of heat generation in the wire per unit volume = 3412.15 Btu/hr ÷ 5.8951×10^-5 ft^3 = 5.79×10^7 Btu/hrft^3
Heat flux = 3412.15 Btu/hr ÷ 3.53×10^-5 ft^2 = 9.67×10^7 Btu/hrft^2
Answer:
d= 4.079m ≈ 4.1m
Explanation:
calculate the shaft diameter from the torque, \frac{τ}{r} = \frac{T}{J} = \frac{C . ∅}{l}
Where, τ = Torsional stress induced at the outer surface of the shaft (Maximum Shear stress).
r = Radius of the shaft.
T = Twisting Moment or Torque.
J = Polar moment of inertia.
C = Modulus of rigidity for the shaft material.
l = Length of the shaft.
θ = Angle of twist in radians on a length.
Maximum Torque, ζ= τ × \frac{ π}{16} × d³
τ= 60 MPa
ζ= 800 N·m
800 = 60 × \frac{ π}{16} × d³
800= 11.78 × d³
d³= 800 ÷ 11.78
d³= 67.9
d= \sqrt[3]{} 67.9
d= 4.079m ≈ 4.1m
Answer is in the photo. I can only upload it to a file hosting service. link below!
linkcutter.ga/gyko
Answer:
Complete answer to the question is explained in the attached files.please have a look on it.
Explanation: