The correct answer is B. on Apex!
The resulting pressure of the gas after decreasing the initial volume from 2 L to 1 L is 3 atm.
<h3>What is
Boyle's Law?</h3>
According to the Boyle's Law at constant temperature, pressure of the gas is inversely proportional to the volume of that gas.
For the given question we use the below equation is:
P₁V₁ = P₂V₂, where
P₁ = initial pressure of gas = 1.5 atm
V₁ = initial volume of gas = 2 L
P₂ = final pressure of gas = ?
V₂ = final volume of gas = 1 L
On putting all these values on the above equation, we get
P₂ = (1.5atm)(2L) / (1L) = 3 atm
Hence required pressure of the gas is 3 atm.
To know more about Boyle's Law, visit the below link:
brainly.com/question/469270
Answer:
2 AsCl₃ + 3 H₂S → As₂S₃ + 6 HCl
Explanation:
When we balance a chemical equation, what we are trying to do is to achieve the same number of atoms for each element on both sides of the arrow. On the right of the arrow is where we can find the products, while the reactants are found on the left of the arrow.
We usually balance O and H atoms last.
AsCl₃ + H₂S → As₂S₃ +HCl
<u>reactants</u>
As --- 1
Cl --- 3
H --- 2
S --- 1
<u>products</u>
As --- 2
Cl --- 1
H --- 1
S --- 3
2 AsCl₃ + H₂S → As₂S₃ +HCl
<u>reactants</u>
As --- 2
Cl --- 6
H --- 2
S --- 1
<u>products</u>
As --- 2
Cl --- 1
H --- 1
S --- 3
The number of As atoms is now balanced.
2 AsCl₃ + 3 H₂S → As₂S₃ +HCl
<u>reactants</u>
As --- 2
Cl --- 6
H --- 6
S --- 3
<u>products</u>
As --- 2
Cl --- 1
H --- 1
S --- 3
The number of S atoms is now equal on both sides.
2 AsCl₃ + 3 H₂S → As₂S₃ + 6 HCl
<u>reactants</u>
As --- 2
Cl --- 6
H --- 6
S --- 3
<u>products</u>
As --- 2
Cl --- 6
H --- 6
S --- 3
The equation is now balanced.
Answer:
In a video game, a flying coconut moves at a constant velocity of 20 meters/second. The coconut hits an obstacle and moves in the opposite direction with a constant velocity of 10 meters/second.
Explanation:
a) A combound which contains only Carbon and Hydrogen. There are covalent bonds between atoms. Hydrogen form one single bond and Carbon forms four covalent bonds. Carbon bonds can be single, double or triple bonds.
All hydrocarbons are organic compounds, but organic compound can include atoms of other elements.
b) Alkyne has a covalent triple bond between two carbon atoms. Simplest alkyne is ethyne HCCH.
b) Alkane contains only Carbon and Hydrogen and there are single bonds
between atoms. Simplest alkane is methane CH4.
c) An alkene has one double bond between Carbon atoms. Simplest
alkene is ethene H2C=CH2.