Answer:
P = 27.9 atm
Explanation:
Given data:
Mass of CO₂ = 25 g
Temperature = 25°C (25+273.15 K = 298.15 K)
Volume of gas = 0.50 L
Pressure of gas = ?
Solution:
Firs of all we will calculate the number of moles of gas,
Number of moles = mass/molar mass
Number of moles = 25 g/ 44 g/mol
Number of moles = 0.57 mol
Pressure of gas :
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
P × 0.50 L = 0.57 mol × 0.0821 atm.L/ mol.K × 298.15 K
P = 13.95 atm.L/ 0.50 L
P = 27.9 atm
According to florida wildlife group who experimentally tape magnets to crocodile heads to disrupt their homing ability so they don't wander into residential areas
Answer:

Explanation:
Half time is period required to desintegrating the half of the initial number of atoms. Then, the total time is:


Answer:
It's better to explain it.
Explanation:
Neutrons do not affect the electron configuration, but the sum of atomic number and the number of neutrons, or neutron number, is the mass of the nucleus. You know that neutrons are found in the nucleus of an atom. Under normal conditions, protons and neutrons stick together in the nucleus. During radioactive decay, they may be knocked out of there. Neutron numbers are able to change the mass of atoms, because they weigh about as much as a proton and electron together. if your asking What is the role of a neutron in an atom? then, Neutrons are very important in providing stability for an atom. Some atoms don't "need" neutrons - The hydrogen atom does not have any neutrons. However, as the atomic number ( # of protons ) increases, the number of neutrons increases as well.
Protons don't like each other. Naturally, 'positive charges repel', so it wouldn't be possible to have more than one proton in the nucleus. Here's where the neutron comes in.
Hope this helps. :)
Answer:
1 - e, 2 - k, 3 - a, 4 - i, 5 - b,
Explanation:
The ratio of the amount of analyte in the stationary phase to the amount in the mobile phase. --- Retention factor.
Time it takes after sample injection into the column for the analyte peak to appear as it exits the column. -- Retention time
The process of extracting a component that is adsorbed to a given material by use of an appropriate solvent system. -- Elution
Measure of chromatographic column efficiency. The greater its value, the more efficient the column. -- Theoretical plate number
Gas, liquid, or supercritical fluid used to transport the sample in chromatographic separations. -- Mobile phase
Immiscible and immobile, it is packed within a column or coated on a solid surface. -- Stationary phase