Answer:

Explanation:
Hello!
In this case, for this melting process, we can identify two sub-processes in order to take the stainless steel from solid to liquid:
1. Heat up from 298.15 K to 1673 K.
2. Undergo the phase transition.
Both process have an associated enthalpy as shown below:


Therefore, the required heat is:

Notice the problem is not providing neither the mass or volume, that is why we assumed the mass is 1 g; however, it can be changed to the mass you are given.
Best regards!
Answer:
Magnitude of the force is 2601.9 N
Explanation:
m = 450 kg
coefficient of static friction μs = 0.73
coefficient of kinetic friction is μk = 0.59
The force required to start crate moving is
.
but once crate starts moving the force of friction is reduced
.
Hence to keep crate moving at constant velocity we have to reduce the force pushing crate ie
.
Then the above pushing force will equal the frictional force due to kinetic friction and constant velocity is possible as forces are balanced.
Magnitude of the force

Answer:
Al llegar a su equilibrio térmico ambas barran tendrán una temperatura de 53 grados centígrados.
Explanation:
Dado que una barra de aluminio que está a 78 grados centígrados entra en contacto con una barra de cobre de la misma longitud y área que esta a 28 grados centígrados, y posteriormente se lleva acabo la transferencia de energía entre ambas barras llegando a su equilibrio térmico, para determinar la temperatura a la que ambas barras llegarán se debe realizar el siguiente cálculo:
(78 + 28) / 2 = X
106 / 2 = X
53 = X
Por lo tanto, al llegar a su equilibrio térmico ambas barran tendrán una temperatura de 53 grados centígrados.
The first thing you should know for this case is that density is defined as the quotient between mass and volume:
D = M / V
In addition, you should keep in mind the following conversion:
1Kg = 1000g
Substituting the values we have:
D = (23.0 * 1000) / (2920) = 7.88 g / cm ^ 3
answer
the density of the iron plate is 7.88 g / cm ^ 3
The magnification of the ornament is 0.25
To calculate the magnification of the ornament, first, we need to find the image distance.
Formula:
- 1/f = u⁻¹+v⁻¹.................... Equation 1
Where:
- f = Focal length of the ornament
- u = image distance
- v = object distance.
make u the subject of the equation
- u = fv/(f+v)................ Equation 2
From the question,
Given:
Substitute these values into equation 2
- u = (12×4)/(12+4)
- u = 48/16
- u = 3 cm.
Finally, to get the magnification of the ornament, we use the formula below.
- M = u/v.................. Equation 3
Where
- M = magnification of the ornament.
Substitute these values above into equation 3
Hence, The magnification of the ornament is 0.25