1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bazaltina [42]
2 years ago
6

A car on a freeway speeds up to get around another car. The car speeds up from 20 m/s to 35 m/s in 5 seconds.

Physics
1 answer:
Tanzania [10]2 years ago
5 0

Answer:

Initial speed = 20 m/s

Final speed = 35 m/s

Time to speed up = 5 seconds

Explanation:

Directly from the information given:

Initial speed = 20 m/s

Final speed = 35 m/s

Time to speed up = 5 seconds

You might be interested in
A baseball rolls off of a .7 m high desk and strikes the floor .25 m always how fast was the ball rolling
labwork [276]

Answer:

the ball's velocity was approximately 0.66 m/s

Explanation:

Recall that we can study the motion of the baseball rolling off the table in vertical component and horizontal component separately.

Since the velocity at which the ball was rolling is entirely in the horizontal direction, it doesn't affect the vertical motion that can therefore be studied as a free fall, where only the constant acceleration of gravity is affecting the vertical movement.

Then, considering that the ball, as it falls covers a vertical distance of 0.7 meters to the ground, we can set the equation of motion for this, and estimate the time the ball was in the air:

0.7 = (1/2) g t^2

solve for t:

t^2 = 1.4 / g

t = 0.3779  sec

which we can round to about 0.38 seconds

No we use this time in the horizontal motion, which is only determined by the ball's initial velocity (vi) as it takes off:

horizontal distance covered = vi * t

0.25 = vi * (0.38)

solve for vi:

vi = 0.25/0.38  m/s

vi = 0.65798  m/s

Then the ball's velocity was approximately 0.66 m/s

4 0
2 years ago
A sprinter accelerates from rest to 10.0 m/s in 1.35 s l. What is her acceleration?
ale4655 [162]

Answer:

dsfsdfgfdsggfgsgsfsfgfsgffsfgfgfgf

Explanation:

sgdfggsfdsgfgsgsmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

8 0
3 years ago
A 3-kg wheel with a radius of 35 cm is spinning in the horizontal plane about a vertical axis through its center at 800 rev/s. A
Kruka [31]

Answer:

\omega_f = 585.37 \ rev/s

Explanation:

given,

mass of wheel(M) = 3 Kg

radius(r) = 35 cm

revolution (ω_i)=  800 rev/s

mass (m)= 1.1 Kg

I_{wheel} = Mr²

when mass attached at the edge

I' = Mr² + mr²

using conservation of angular momentum

I \omega_i = I' \omega_f

(Mr^2) \times 800 = ( M r^2 + m r^2) \omega_f

M\times 800 = ( M + m )\omega_f

3\times 800 = (3+1.1)\times \omega_f

2400 = (4.1)\times \omega_f

\omega_f = 585.37 \ rev/s

3 0
3 years ago
gAn optical engineer needs to ensure that the bright fringes from a double-slit are 15.7 mm apart on a detector that is from the
igomit [66]

Answer:

d = 68.5 x 10⁻⁶ m = 68.5 μm

Explanation:

The complete question is as follows:

An optical engineer needs to ensure that the bright fringes from a double-slit are 15.7 mm apart on a detector that is  1.70m from the slits. If the slits are illuminated with coherent light of wavelength 633 nm, how far apart should the slits be?

The answer can be given by using the formula derived from Young's Double Slit Experiment:

y = \frac{\lambda L}{d}\\\\d  =\frac{\lambda L}{y}\\\\

where,

d = slit separation = ?

λ = wavelength = 633 nm = 6.33 x 10⁻⁷ m

L = distance from screen (detector) = 1.7 m

y = distance between bright fringes = 15.7 mm = 0.0157 m

Therefore,

d = \frac{(6.33\ x\ 10^{-7}\ m)(1.7\ m)}{0.0157\ m}\\\\

<u>d = 68.5 x 10⁻⁶ m = 68.5 μm</u>

7 0
3 years ago
A glider with mass m = 0.230 kg sits on a frictionless horizontal air track, connected to a spring with force constant k = 4.50
loris [4]

Answer

given,

mass of glider = 0.23 Kg

spring constant = k = 4.50 N/m

spring stretched to 0.130 m

The springs potential energy =

 U = \dfrac{1}{2}kx^2

 U = \dfrac{1}{2}\times 4.5 \times 0.13^2

        U = 0.038 J

at x = 0,the only energy will be kinetic .

 \dfrac{1}{2}mv^2=0.038

 \dfrac{1}{2}\times 0.23 \times v^2=0.038

         v² = 0.3304

         v = 0.575 m/s

displacement of the glider

      using conservation of energy

 \dfrac{1}{2}mv^2=\dfrac{1}{2}kx^2

 x =v\sqrt{\dfrac{m}{k}}

 x =3\times \sqrt{\dfrac{0.23}{4.5}}

        x = 0.678 m

8 0
3 years ago
Other questions:
  • A light platform is suspended from the ceiling by a spring. A student with a mass of 90 kg climbs onto the platform. When it sto
    11·1 answer
  • What can you say about the impedance of a series RLC circuit at the resonant frequency? The impedance of a series RLC circuit is
    10·2 answers
  • There is more land in the Northern Hemisphere than in the Southern Hemisphere. How might this difference affect CO2, concentrati
    6·1 answer
  • An electron enters a region of space containing a uniform 0.0000193-T magnetic field. Its speed is 121 m/s and it enters perpend
    12·1 answer
  • A ball is thrown vertically upward (assumed to be the positive direction) with a speed of 24.0 m/s from a height of 3.0 m. (a) H
    14·1 answer
  • Which word best describes the symmetry of a starfish
    12·1 answer
  • Describe Charle’s Law and Boyle’s Law.
    5·1 answer
  • Please Help! If you dont know the answers please dont answer! i will give you brrainlist! if you complete correctly!
    14·1 answer
  • An object is moving east, and its velocity changes from 66 mvs to 26 mvs in 10 seconds. Which describes the
    8·1 answer
  • Calculate the mass of wood that has the same energy as 1 g of oil
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!