Answer:
The database has three tables for tracking horse-riding lessons: Horse with columns: ID - primary key; RegisteredName; Breed; Height; BirthDate.
Explanation:
Admission to the Engineering course at Cambridge is highly competitive, both in terms of the numbers and quality of applicants. In considering applicants, Colleges look for evidence both of academic ability and of motivation towards Engineering. There are no absolute standards required of A Level achievement, but it should be noted that the average entrant to the Department has three A* grades. You need to get top marks in Maths and Physics.All Colleges strongly prefer applicants for Engineering to be taking a third subject that is relevant to Engineering.
Hope that helps and good luck if you are applying. Can you please mark this as brainliest and press the thank you button and if you have any further questions please let me know!!
The x-ray beam's penetrating power is regulated by kVp (beam quality). Every time an exposure is conducted, the x-rays need to be powerful (enough) to sufficiently penetrate through the target area.
<h3>How does kVp impact the exposure to digital receptors?</h3>
The radiation's penetration power and exposure to the image receptor both increase as the kVp value is raised.
<h3>Exposure to the image receptor is enhanced with an increase in kVp, right?</h3>
Due to an increase in photon quantity and penetrability, exposure at the image receptor rises by a factor of five of the change in kVp, doubling the intensity at the detector with a 15% change in kVp.
To know more about kVp visit:-
brainly.com/question/17095191
#SPJ4
Answer:
938.7 milliseconds
Explanation:
Since the transmission rate is in bits, we will need to convert the packet size to Bits.
1 bytes = 8 bits
1 MiB = 2^20 bytes = 8 × 2^20 bits
5 MiB = 5 × 8 × 2^20 bits.
The formula for queueing delay of <em>n-th</em> packet is : (n - 1) × L/R
where L : packet size = 5 × 8 × 2^20 bits, n: packet number = 48 and R : transmission rate = 2.1 Gbps = 2.1 × 10^9 bits per second.
Therefore queueing delay for 48th packet = ( (48-1) ×5 × 8 × 2^20)/2.1 × 10^9
queueing delay for 48th packet = (47 ×40× 2^20)/2.1 × 10^9
queueing delay for 48th packet = 0.938725181 seconds
queueing delay for 48th packet = 938.725181 milliseconds = 938.7 milliseconds