Answer:
a. 3-methylbutan-2-ol
b. 2-methylcyclohexan-1-ol
Explanation:
For this reaction, we must remember that the hydroboration is an <u>"anti-Markovnikov" reaction</u>. This means that the "OH" will be added at the <em>least substituted carbon of the double bond.</em>
In the case of <u>2-methyl-2-butene</u>, the double bond is between carbons 2 and 3. Carbon 2 has two bonds with two methyls and carbon 3 is attached to 1 carbon. Therefore <u>the "OH" will be added to carbon three</u> producing <u>3-methylbutan-2-ol</u>.
For 1-methylcyclohexene, the double bond is between carbons 1 and 2. Carbon 1 is attached to two carbons (carbons 6 and 7) and carbon 2 is attached to one carbon (carbon 3). Therefore<u> the "OH" will be added to carbon 2</u> producing <u>2-methylcyclohexan-1-ol</u>.
See figure 1
I hope it helps!
Answer:
Li and H
Explanation:
2Li(s)+2H2O(i)→2LiOH(aq)+H2(g) is full balanced
Answer:
2.44 K IS THE TEMPERATURE OF THE GAS
Explanation:
PV = nRT
P = 0.5 atm
V = 2 L
n = 5 moles
R = 0.082 L atm mol^-1 K^-1
T = ?
Substituting for T in the equation, we obtain:
T = P V / nR
T = 0.5 * 2 / 5 * 0.082
T = 1 / 0.41
T = 2.44 K
The temperature of the gas is 2.44 K
By itself, i don’t think so.
though, paired with a hydrogen bond, it is.
If i’m wrong, please feel free to let me know :)