<span>What you need to do while answering this questions, is ask yourself what has cells - only if a thing has cells can you see those cells under a microscope. Objects of animal and plant origin have cells, so blood, plant and cork (made of tree bark) can have cells, and a box too, if it's made of wood. So we can''t exclude any answers based on this. We must then know the story of Robert Hook - and it was in fact a cork. He did this discovery around 1655. At the time his main interest was the microscope rather than the cork, and he used to cork to demonstrate the function of the microscope. The correct answer is CORK.</span>
Explanation:
There are two components of a longitudinal sound wave which are compression and rarefaction. Similarly, there are two components of the transverse wave, the crest, and trough.
The crest of a wave is defined as the part that has a maximum value of displacement while the trough is defined as the part which corresponds to minimum displacement.
While compression is that space where the particles are close together while the rarefaction is that space where the particles are far apart from each other.
So, the refraction or the rarefied part of a longitudinal sound wave is analogous to a trough of a transverse wave.
Electrons can move from one atom to another.
When a lot of them are doing it at the same time,
you have an electric current.
We asked around here at Brainly, and nobody knows
what an "Msideus" is, but we all know that there aren't
any of them in atoms.
Answer:
low
Explanation:
the higher the kinetic energy, the More the vibration of molecules, thus heat is more on the side with highly vibrating molecules
Refer to the diagram shown below.
m = the mass of the object
x = the distance of the object from the equilibrium position at time t.
v = the velocity of the object at time t
a = the acceleration of the object at time t
A = the amplitude ( the maximum distance) of the mass from the equilibrium
position
The oscillatory motion of the object (without damping) is given by
x(t) = A sin(ωt)
where
ω = the circular frequency of the motion
T = the period of the motion so that ω = (2π)/T
The velocity and acceleration are respectively
v(t) = ωA cos(ωt)
a(t) = -ω²A sin(ωt)
In the equilibrium position,
x is zero;
v is maximum;
a is zero.
At the farthest distance (A) from the equilibrium position,
x is maximum;
v is zero;
a is zero.
In the graphs shown, it is assumed (for illustrative purposes) that
A = 1 and T = 1.