A developing story hope it helped
The acceleration of the car is 6.86 m/s² and the time taken for the car to stop is 3.64 s.
The given parameters;
- mass of the car, m = 1400 kg
- Initial velocity of the car, u = 25 m/s
- coefficient of kinetic friction, μ = 0.7
The acceleration of the car is calculated as follows;
a = μg
a = 0.7 x 9.8
a = 6.86 m/s²
The time taken for the car to stop is calculated by using Newton's second law of motion;
F = ma

Thus, the acceleration of the car is 6.86 m/s² and the time taken for the car to stop is 3.64 s.
Learn more here:brainly.com/question/19887955
Answer:
d
Explanation:
Solution:-
- The Quantity of theory of money states:
M * V = P * Y
Where,
M = Money supply
V = Velocity of money exchange
P = The price level
Y = Real GDP
- By re-arranging the formula and solving for "V" we have:
V = P*Y / M
- The expression on right hand side increases if exchange of dollars increases.
Answer: The pressure that one experiences on the Mount Everest will be different from the one, in a classroom. It is because pressure and height are inversely proportional to each other. This means that as we move up, the height keeps on increasing but the pressure will keep on decreasing. This is the case that will be observed when one stands on the Mount Everest as the pressure is comparatively much lower there.
It is because as we move up, the amount of air molecules keeps on decreasing but all of the air molecules are concentrated on the lower part of the atmosphere or on the earth's surface.
Thus a person in a low altitude inside a classroom will experience high pressure and a person standing on the Mount Everest will experience low pressure.
Answer
given,
F₁ is horizontal = 40 N
F₂ is normal = 20 N
F₃ is parallel = 30 N
work done by
W₂ = 0 as force is acting perpendicular to the direction of motion.
as the motion moved to 0.8 cm
W₃ = F₃ x d
W₃ = 30 x 0.8
W₃ = 24 J
W₁ = F₁ x d
W₁ = F₁ cos ∅ x d
W₁ = 40 cos 30⁰ x 0.8
W₁ = 27.21 J