Answer:
The solution to the question above is explained below:
Explanation:
For which solid is the lumped system analysis more likely to be applicable?
<u>Answer</u>
The lumped system analysis is more likely to be applicable for the body cooled naturally.
<em>Question :Why?</em>
<u>Answer</u>
Biot number is proportional to the convection heat transfer coefficient, and it is proportional to the air velocity. When Biot no is less than 0.1 in the case of natural convection, then lumped analysis can be applied.
<u>Further explanations:</u>
Heat is a form of energy.
Heat transfer describes the flow of heat across the boundary of a system due to temperature differences and the subsequent temperature distribution and changes. There are three different ways the heat can transfer: conduction, convection, or radiation.
Heat transfer analysis which utilizes this idealization is known as the lumped system analysis.
The Biot number is a criterion dimensionless quantity used in heat transfer calculations which gives a direct indication of the relative importance of conduction and convection in determining the temperature history of a body being heated or cooled by convection at its surface. In heat transfer analysis, some bodies are observed to behave like a "lump" whose entire body temperature remains essentially uniform at all times during a heat transfer process.
Conduction is the transfer of energy in the form of heat or electricity from one atom to another within an object and conduction of heat occurs when molecules increase in temperature.
Convection is a transfer of heat by the movement of a fluid. Convection occurs within liquids and gases between areas of different temperature.
People are asleep at 3 am so energy would be less then.
Answer:
3,544.375Joules
Explanation:
Kinetic energy is the energy possessed by a body by virtue of its motion, It is expressed as;
Kinetic energy = 1/2mv²
m is the mass of the body
v is the velocity
For the ball carrier;
KE = 1/2(75)(6.5)²
KE = 3168.75/2
KE = 1584.375Joules
For the defender;
KE = 1/2(80)(7)²
KE = 3920/2
KE = 1960Joules
The kinetic energy of the ball carrier/defender system BEFORE the tackle = KE for the carrier + KE for the defender
kinetic energy of the ball carrier/defender system BEFORE the tackle= 1584.375+1960 = 3,544.375Joules
<span>12-50t=70t, t= 0.1h = 6 minutes.</span>
If it was removed it would not be a predator