If there are 0.2 M solutions of both acid and base, the concentrations of hydrogen and hydroxide ions will be equal at equivalence point.
The reaction of sulfuric acid and a basic solution BOH occurs as follows;
H2SO4(aq) + 2BOH(aq) -----> B2SO4(aq) + 2H2O(l)
In the question, we are told that that both the solution of the sulfuric acid and the basic solution are 0.2 M.
The point where all the hydrogen and hydroxide ions have reacted according to the stoichiometry of the reaction. If there is really equimolar amounts of acid and base, the concentration of hydrogen and hydroxide ions will be equal at equivalence point.
Learn more: brainly.com/question/2192784
<span>this is a limiting reagent problem.
first, balance the equation
4Na+ O2 ---> 2Na2O
use both the mass of Na and mass of O2 to figure out how much possible Na2O you could make.
start with Na and go to grams of Na2O
55.3 gNa x (1molNa/23.0gNa) x (2 molNa2O/4 molNa) x (62.0gNa2O/1molNa2O) = 75.5 gNa2O
do the same with O2
64.3 gO2 x (1 molO2/32.0gO2) x (2 molNa2O/1 mol O2) x (62.0gNa2O/1molNa2O) = 249.2 g Na2O
now you must pick the least amount of Na2O for the one that you actually get in the reaction. This is because you have to have both reacts still present for a reaction to occur. So after the Na runs out when it makes 75.5 gNa2O with O2, the reaction stops.
So, the mass of sodium oxide is
75.5 g</span>
Answer:
The mole fraction of benzene and toluene in solution containing mole fraction of benzene and toluene in solution containing is 45.9%
Explanation:
don't worry
its is correct!
Answer:
2192.64 PSI.
Explanation:
- From the general law of ideal gases:
<em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the container in L (V = 1650 L).
n is the no. of moles of the gas in mol (n = 9750 mol).
R is the general gas constant (R = 0.082 L.atm/mol.K).
T is the temperature of the gas in (T = 35°C + 273 = 308 K).
∴ P = nRT/V = (9750 mol)(0.082 L.atm/mol.K)(308 K)/(1650 L) = 149.2 atm.
- <u><em>To convert from atm to PSI:</em></u>
1 atm = 14.696 PSI.
<em>∴ P = 149.2 atm x (14.696 PSI/1.0 atm) = 2192.64 PSI.</em>
Answer:
A) SiO2 is the limiting reactant
B) Theoretical yield= 72333.3g
C) % yield =91.5%
Explanation:
SiO2(s) + 2C(s) --------------> Si(s) + 2CO(g)
n(SiO2)= 155000/60 = 2583.33 mols
n(C)= 79000/12= 3291.66 mols
a)SiO2 is the limiting reactant
According to the balanced reaction equation,
60g of SiO2 produced 28g of SiO2
155000g of SiO2 will produce 155000×28/60= 72333.3g
Therefore theoretical yield of Si= 72333.3g
% yield= 66200/72333.3×100/1 =91.5%