Answer:
The deformation is 0.088289 m
The final height of the monument is 170-0.088289 = 169.911702 m
Explanation:
Thermal coefficient of marble varies between (5.5 - 14.1) ×10⁻⁶/K = α
So, let us take the average value
(5.5+14.1)/2 = 9.8×10⁻⁶ /K
Change in temperature = 35-(-18) = 53 K = ΔT
Original length = 170 m = L
Linear thermal expansion

The deformation is 0.088289 m
The final height of the monument is 170-0.088289 = 169.911702 m (subtraction because of cooling)
Answer:
15.4 kg.
Explanation:
From the law of conservation of momentum,
Total momentum before collision = Total momentum after collision
mu+m'u' = V(m+m').................... Equation 1
Where m = mass of the first sphere, m' = mass of the second sphere, u = initial velocity of the first sphere, u' = initial velocity of the second sphere, V = common velocity of both sphere.
Given: m = 7.7 kg, u' = 0 m/s (at rest)
Let: u = x m/s, and V = 1/3x m/s
Substitute into equation 1
7.7(x)+m'(0) = 1/3x(7.7+m')
7.7x = 1/3x(7.7+m')
7.7 = 1/3(7.7+m')
23.1 = 7.7+m'
m' = 23.1-7.7
m' = 15.4 kg.
Hence the mass of the second sphere = 15.4 kg
The answer to that question is c. tamod
Hey there,
<span>They interfere essentially like any other form of wave.
</span>
Hope this helps :))
~Top