Answer:
t = 1.75
t = 0.04
Explanation:
a)
For part 1 we want to use a kenamatic equation with constant acceleration:
X = 1/2*a*t^2
isolate time
t = sqrt(2X / a)
Plugin known variables. Acceleration is the force of gravity which is 9.8 m/s^2
t = sqrt(2*15m / 9.8m/s^2)
t = 1.75 s
b)
The speed of sound travels at a constant speed therefore we don't need acceleration and can use the equation:
v = d / t
isolate time
t = d / v
plug in known variables
t = 15m / 340m/s
t = 0.04 s
A.900 watts That would be your correct answer
Answer:
If the particle is an electron 
If the particle is a proton, 
Explanation:
Initial speed at the origin, 
to +ve x-axis
The particle crosses the x-axis at , x = 1.5 cm = 0.015 m
The particle can either be an electron or a proton:
Mass of an electron, 
Mass of a proton, 
The electric field intensity along the positive y axis
, can be given by the formula:

If the particle is an electron:



If the particle is a proton:



The electric force (and the gravitational force too) is inversely proportional
to the square of the distance between the objects involved.
In this question, the distance is increased by a factor of (1.25/0.95) .
So the electric force will change by the factor of (0.95/1.25)² .
The new force is
(1.32 N) · (0.95/1.25)² = 0.762... newton (rounded)