Answer:
the magnitude of the electric force on the projectile is 0.0335N
Explanation:
time of flight t = 2·V·sinθ/g
= (2 * 6.0m/s * sin35º) / 9.8m/s²
= 0.702 s
The body travels for this much time and cover horizontal displacement x from the point of lunch
So, use kinematic equation for horizontal motion
horizontal displacement
x = Vcosθ*t + ½at²
2.9 m = 6.0m/s * cos35º * 0.702s + ½a * (0.702s)²
a = -2.23 m/s²
This is the horizontal acceleration of the object.
Since the object is subject to only electric force in horizontal direction, this acceleration is due to electric force only
Therefore,the magnitude of the electric force on the projectile will be
F = m*|a|
= 0.015kg * 2.23m/s²
= 0.0335 N
Thus, the magnitude of the electric force on the projectile is 0.0335N
Answer:
D
Explanation:
The answer is Niels Bohr's planetary model, the difference between this model and all of the other models is that the Bohr's PM Is more of layers of
Nucleus - Protons and Neutrons
Electron Orbital - Period 1 Elements
2 electrons
Electron Orbital - Period 2 Elements
8 electrons
Electron Orbital - Period 3 Elements
8 electrons
If that made sense-
Answer:
Negative
Explanation:
Observe that the object below moves in the positive direction with a changing velocity. An object which moves in the positive direction has a positive velocity. If the object is slowing down then its acceleration vector is directed in the opposite direction as its motion (in this case, a negative acceleration).
<h2>
Its velocity when it crosses the finish line is 117.65 m/s</h2>
Explanation:
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = ?
Time, t = 6.8 s
Displacement, s = 1/4 mi = 400 meters
Substituting
s = ut + 0.5 at²
400 = 0 x 6.8 + 0.5 x a x 6.8²
a = 17.30 m/s²
Now we have equation of motion v = u + at
Initial velocity, u = 0 m/s
Final velocity, v = ?
Time, t = 6.8 s
Acceleration, a = 17.30 m/s²
Substituting
v = u + at
v = 0 + 17.30 x 6.8
v = 117.65 m/s
Its velocity when it crosses the finish line is 117.65 m/s
Answer:
-The battery-the power source
-Closed conducting loop
Explanation:
-To produce an electric current, the following requirements must be met:
-A battery-This is the energy source than will do work on the charge thus moving from a low energy location to high energy location.
-Closed Conducting Loop-The loop is usually made of copper wires due to their high electric conductivity.