The given condition for a 100% efficient step down transformer is not true.
<h3>
How do Step-down Transformers work?</h3>
Because there are fewer turns in the secondary winding of a step-down transformer, the secondary voltage is lower than the initial voltage. As a result, this kind of transformer is employed to reduce the voltage to the levels intended for the circuit. Almost all power supply incorporate a step-down transformer to keep the operating voltage range of the circuit within acceptable limits. Electronic transformers and distribution systems are often where these transformers are installed (power transformers).
<h3>
What Does a Step-Down Transformer Mean by Power?</h3>
Using the system voltage and current, we can calculate the power of a transformer. Volt-Amps, or VA, is the unit used to measure the power in a transformer (for larger transformers Kilo Volt-Amps, kVA).
Any transformer should, in theory, have constant power on both sides, which implies that the power available on the secondary side of the transformer should match the power available on the primary side. This also applies to step-down transformers. A step-down transformer's secondary side has a lower voltage than its primary side, hence in order to balance the transformer's total power, the secondary current would need to be increased.
<h3>
What is the Step-Down Transformer's Relationship Between Voltage and Current?</h3>
In a step-down transformer, the output current is greater than the input current while the output voltage is lower than the primary voltage.
To know more about step down transformer visit:
brainly.com/question/7551270
#SPJ4
-- If the system is 'closed', then nothing ... including energy ... can get in or out, and the total energy inside has to be constant.
If half of the energy in the system starts out as potential energy and the rest starts out as kinetic, and then the potential energy increases, there's only one place the increase could have come from ... it could only have been converted from kinetic energy. So the <em>kinetic energy</em> in the system <em>must</em> <em>decrease</em>.
In fact, this isn't even a "result". The kinetic energy has to decrease <em><u>before</u></em> the potential energy can increase, because that's where the increase has to come from.
If the system is 'open', then energy can come in and go out. If the potential energy inside suddenly increases, we don't know where it came from, so we can't say anything about what happens to the system.
Answer : The partial pressure of
is, 67.009 atm
Solution : Given,
Partial pressure of
at equilibrium = 30.6 atm
Partial pressure of
at equilibrium = 13.9 atm
Equilibrium constant = 
The given balanced equilibrium reaction is,

The expression of
will be,

Now put all the values of partial pressure, we get


Therefore, the partial pressure of
is, 67.009 atm
Answer:
43.96 L
Explanation:
We are given that





We know that


Substitute the values


Hence, the volume of balloon at -14.8 degree Celsius=43.96 L
Answer:
the angular velocity of the carousel after the child has started running =

Explanation:
Given that
the mass of the child = m
The radius of the disc = R
moment of inertia I = 
change in time = 
By using the torque around the inertia ; we have:
T = I×∝
where
R×F = I × ∝
R×F =
∝
F =
∝
∝ =
( expression for angular angular acceleration)
The first equation of motion of rotating wheel can be expressed as :

where ;
∝ =
Then;


∴ the angular velocity of the carousel after the child has started running =
