Answer:
An object which moves in the positive direction has a positive velocity. If the object is slowing down then its acceleration vector is directed in the opposite direction as its motion (in this case, a negative acceleration).
Explanation:
We will hear the sound of siren of frequency 1553.4606 Hz.
<h3>What is Doppler Effect?</h3>
The apparent change in wave frequency brought on by the movement of a wave source is known as the Doppler effect. When the wave source is coming closer and when it is moving away, the perceived frequency changes. The Doppler effect explains why we hear a passing siren's sound changing in pitch.
according to Dopplers Effect,
![f'=[\frac{v + v_{0} }{v - v_{s} } ]f](https://tex.z-dn.net/?f=f%27%3D%5B%5Cfrac%7Bv%20%2B%20v_%7B0%7D%20%7D%7Bv%20-%20v_%7Bs%7D%20%7D%20%5Df)
![f'= [\frac{700+68.1}{700-94.8} ]* 1224](https://tex.z-dn.net/?f=f%27%3D%20%5B%5Cfrac%7B700%2B68.1%7D%7B700-94.8%7D%20%5D%2A%201224)

the frequency would be 1553.4606 Hz.
to learn more about Doppler Effect go to - brainly.com/question/9165991
#SPJ4
Answer:
Once a carnivorous plant has procured an item for dinner, it has to have some way to turn it into fertilizer. What carnivorous plants do is very similar to what humans do with their dinner after they have eaten it. Most carnivorous plants have glands that secrete acids and enzymes to dissolve proteins and other compounds. The plants may also enlist other organisms to help with digestion. The plants then absorb the nutrients made available from the prey.
Drosera releases digestive juices through the glands at the tip of its tentacles and absorbs the nutrients through the tentacles, leaf surface, and sessile glands. In order to do this it bends its tentacles and rolls or bends the leaf to get as many tentacles as possible into contact with the prey for digestion and to make as much leaf surface available for absorption. Its relative Drosophyllum has differently structured, non moving tentacles and doesn't use them directly for digestion. Instead it has specialized glands on the surface of the leaf that release the digestive enzymes (see Carniv. Pl. Newslett. 11(3):66-73 ( PDF ) for drawings and discussion).
The sealed trap of Dionaea does digestion in a way similar to the leaf surface digestion carnivores—upon capture of a prey, digestive enzymes in mucous are released. The advantage of the sealed trap of Dionaea is rain won't wash away the nutrients as digestion proceeds.
The sealed trap carnivores Aldrovanda and Utricularia already have water in their traps so they only need to release enzymes. Utricularia appears to release the enzymes continuously into its traps.
The other carnivorous plants use either a mixed mode of digestive enzymes and partner organisms (Genlisea, Sarracenia, most Nepenthes, Cephalotus, some Heliamphora, Roridula) or other organisms exclusively for digestion (most Heliamphora, some Nepenthes, Darlingtonia). Part of the reason for partnering with other organisms is that the plants actually have little choice in the matter. This could also be a factor for the leaf surface and sealed trap digesters as well. The prey will have gut flora that are quite capable of digesting their host when it dies. In addition, insect larvae, frog tadpoles, and predacious protozoans will or will attempt to take up residence in water-filled traps. The plant releasing digestive enzymes and acids into the traps will help tip the nutrition balance to themselves, but there are limits.
Explanation:
Explanation:
003 (part 1 of 2)
Pressure is force divided by area.
P = F / A
P = (117 kg × 9.8 m/s²) / (2 × (0.05 m)²)
P = 229,320 Pa
003 (part 2 of 2)
There are approximately 6895 Pa in 1 psi.
P = 229,320 Pa × (1 psi / 6895 Pa)
P = 33.3 psi
004 (part 1 of 2)
Since the collisions are elastic, the angle of reflection is the same as the angle of incidence (it bounces off at the same angle).
Impulse = change in momentum
F Δt = m Δv
F (36 s) = (300 × 0.003 kg) (5.2 sin 57° m/s − (-5.2 sin 57° m/s))
F = 0.218 N
004 (part 2 of 2)
Pressure is force over area.
P = F / A
P = 0.218 N / 0.712 m²
P = 0.306 N/m²